The Application of Cochlear Audio Analysis Techniques to Percussion in Electroacoustic Music

Anderson Mills

The University of Texas at Austin

originally presented 2005–05–18 at 149th meeting of the Acoustical Society of America Vancouver, Canada

modified and represented 2005–10–07

Introduction

- Objective
- Background
 - Electroacoustic Music
 - Auditory Image Model (A. I. M.)
- Percussivity Profile
 - Definition
 - Algorithms
- Results
- Conclusion and Future Work

Objective

The Greater Goal

provide detailed, informative images corresponding to pieces of electroacoustic music (lack a standard visual representation)

My Goal

create algorithms which use models of human hearing to extract audio properties from recorded electroacoustic music

Today's Goal

create a percussivity profile from "sound bites"

Background

Electroacoustic Music

- definition involves electronic technology for the compositional manipulation of sound
- not restricted by physics
- the blurry lines of perception
- no Western musical score

Background

- A. I. M. The Auditory Image Model
 - time-domain model of auditory processing
 - attempts to simulate "auditory images" humans hear
 - developed at the University of Cambridge in the Center for the Neurological Basis for Hearing (C. N. B. H.) by Dr. Roy Patterson, et. al.

Percussivity	Profile
--------------	---------

Definition

measure of the presence of a percussive event at all points in a piece of music

- any type of percussive event
- ignore for now the phenomenon of too much percussion

Algorithms

Cross-Correlation Method

- Cross-Correlation within channel
- Sum of In-Channel Percussivity Profile

Algorithms

Cross-Correlation Method

Algorithms

Noise Likeness Method

- Convolve Frequency Components by Gaussian Impulse
- Use Correlation Coefficient of the "Model Vector" with the Frequency Vector

Algorithms

Percussiveness Method

- Half-wave Rectify and Low Pass Filter the Sound
- Correlate With a 200 msec Descending Ramp

Other Suggestions

- Spectral Dissonance
- Spectral Flatness

Biggest Problem

• Cannot Use NAP as Spectral Components

In-bin correlation 0:07 of "Le Vertige Inconnu" with impulse

Results In-bin correlation 0:07 of "Le Vertige Inconnu" with ramp ×10

Cross Correlation Method of "Le Vertige Inconnu" by spectrogram

In-channel correlation 0:07 of "Le Vertige Inconnu" with impulse

In-channel correlation 0:07 of "Le Vertige Inconnu" with ramp

Cross Correlation Method of "Le Vertige Inconnu" by spectrogram

In-channel correlation 0:07 of "Le Vertige Inconnu" with frequency dependent hit

Cross Correlation Method of "Le Vertige Inconnu" by A. I. M. with frequency dependent hit

Conclusion and Future Work

Conclusion

- from a larger scope, currently working on **percussivity profile**
- shown the first draft unmastered tool

Future Work

- frequency dependent hit with scaling for sample length
- human experiment comparison
- use temporal profile of the S. A. I. for noise-likeness
- self-similarity according to percussivity profile