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ABSTRACT

The Kirchhoff Integral Theorem is a procedure used to calculate far-field quantities
from known values on a surface surrounding an acoustic source distribution. Choosing far-
field pressure as the calculated quantity allows generation of pressure fields from complex
sources which have no analytical expression for far-field pressure. The discretization of the
Kirchhoff surface causes error in the calculation, but this error can be controlled to produce
results of the desired accuracy. Grid point spacing, grid layer separation, time sampling,
and grid size and shape are elements of the discretization shown to affect the error in the
calculations. Grid layer separation distance is the strictest requirement which must be

fulfilled to achieve accurate results.



xii

ACKNOWLEDGMENTS

Many people helped in the creation of this thesis. Paul Cannan, Jessica Moore, Tad
Rollow, and Brian Tuttle deserve special thanks for their technical suggestions and editing
expertise during the process of making the thesis a physical reality. I would like to thank
Cat Bradley and Julia Davenport for their visionary and kinetic support during the time I
spent on this research. Dan Chen’s artistic input is also appreciated.

I would like to thank Dr. Don Thompson for acting as my advisor throughout the
completion of this work. The other members of my committee, Dr. Victor Sparrow and
Dr. Philip Morris, also recognized for their time and effort in making this thesis an accurate
and useful document.

My parents, Mr.and Mrs. John and Marie Mills, showed me support during this research
with their unending patience and encouragement. I would like to also pay respect to my
grandparents, Mr. and Mrs. Anderson and Jacqueline Mills, for the love and support they
provided during the portion of their lives that I was fortunate enough to share. I will miss

them dearly.



xiii

Discipline is the key.



Chapter 1.
INTRODUCTION

The Kirchhoff Integral Theorem is a mathematical formula for calculating a far-field
quantity from an arbitrary wave source. The theorem can provide far-field acoustic pres-
sure if pressure values are known on a surface surrounding the wave source. Because this
“Kirchhoff” surface can be translated into the computational domain, numerical techniques
fueled by modern computing resources have renewed interest in this century old theorem.
This thesis is primarily concerned with acoustic pressure calculations, and therefore the
Kirchhoff Integral Theorem is used for its ability to calculate pressure deviation about the
ambient pressure. In this thesis, “pressure” always refers to the acoustic pressure.

The purpose of this thesis is to examine how sensitive the far-field calculations of a com-
putational version of the Kirchhoff Integral Theorem are to variations in the discretization
of the Kirchhoff surface. Parameters of the Kirchhoff surface include size, shape, point spac-
ing, layer separation distance. Time sampling is also studied and is included as a parameter
of discretization though it is not specifically a parameter of the Kirchhoff surface.

One of the significant uses of a computational version of Kirchhoff’s formula is to
determine far-field pressure for sources which have no closed-form expressions for pressure.
An example of a complicated source with no analytical expression for far-field pressure is a
turbomachine. If computational fluid dynamics simulations can provide pressure values
on a surface surrounding a turbomachine, the Kirchhoff method can calculate far-field
acoustic pressure from those pressure values. This example provides the motivation for
the computational Kirchhoff formulations in this thesis.

The discretization of the Kirchhoff surface into a computational grid does introduce
error, however. Effectively, the computational grid samples pressure waves which change in
both time and space. This thesis suggests how the construction of computational grids is

related to the error in the calculations of the Kirchhoff method.



1.1. Background

The following is a brief set of publications discussing the Kirchhoff Integral Theorem.
Gustav Robert Kirchhoff (1824-1887) first presented his integral theorem in a paper entitled
“Toward a Theory of Light Rays”* in 1882. A frequently cited modern derivation which uses
the method in theory about the diffraction of light rays and other electromagnetic problems
is presented by Stratton.'? According to Pierce,'! Kirchhoff’s theorem also facilitates the
discussion of sound radiation, which is also shown by the many references in “Review: The
Use of Kirchhoff’s Method in Computational Acoustics” presented by Lyrintzis.® This thesis
corroborates accuracy studies of a computational implementation of the Kirchhoff Integral
Theorem conducted by Meadows and Atkins”. Although their work explores some of the

same discretization effects, both their study and this thesis include unique information.

1.2. The Kirchhoff Integral Theorem

In discussing the sensitivity of a computational version of the Kirchhoff Integral The-
orem the starting point is the theorem itself. It states that for a nondeformable, closed
surface, S, surrounding an arbitrary acoustic source distribution and enclosing any nonlin-

ear effects, a quantity, @, satisfying the linear wave equation,
——— V=0, (1.1)
c

in the exterior of S can be known at a far-field observer point, x = (z,y, z), if the values
for @, % (the partial derivative with respect to time), and % (the partial derivative with
respect to the normal vector 77) are known on the surface. The speed of sound in the

medium is represented by c¢. The far-field is defined as far enough away from the source so

that kR > 1, where k is the wavenumber and is equal to 27”, A is the wavelength of the
oscillation of the source, and R is the distance from the source. The wavenumber k is also

defined as ¥

¢, where w is the angular frequency.

Because this thesis deals with acoustic calculations, pressure, p, is chosen as the quantity
which satisfies the linear wave equation. Because the formulation uses the linear wave
equation, nonlinear pressures are handled as if they are linear. This can cause significant
error in calculated far-field pressure values when the Kirchhoff surface is not far enough

away from the source to completely enclose nonlinear effects.



From Morino’s'® formulation and Pierce’s!' suggested final form, Lyrintzis® develops

the classical Kirchhoff formula using the free space Green’s function'' as

pict)= o [|Bel -2 L2 g, (1.2)

r2on ron  crdnodr),

1/[p6r 10p 1 0rdp
s

where r is the distance between the observer location, x, and the source location on the
surface, y = («',y’, 2’), and the normal vector, 7, points out of the surface at y. For easy
reference, the terms of the integrand are referred to as the “Kirchhoff terms.” Figure 1.1

shows the geometrical relationship of some of the quantities in the Kirchhoff formula.

observer
point

outward
normal

Y
surface
point

surface

Figure 1.1: Illustration of the variables appearing in the Kirchhoff for-
mula.

Because this formulation is based in the time domain, the phase of the pressure values
at y represented at x must be corrected for the propagation time from y to x. This is done
by evaluating all values inside [ ], at the retarded (emission) time, 7. Specifically, 7 is given

as

T=t——. (1.3)



The first term in the integrand of equation (1.2), T%%, has a %2 dependence and for
far-field calculations will not be significant. It remains in the computational formulations,

however, because it does become significant as the x approaches the Kirchhoff surface.

1.3. Derivation

The following is Pierce’s'" derivation of the Kirchhoff-Helmholtz Integral Theorem with
a few changes in notation to fit the formulation of the Kirchhoff Integral Theorem given in
the last section. The Helmholtz Integral Theorem is derived in the frequency domain and
then moved back into the time domain to form the Kirchhoff Integral Theorem.

Starting with the vector identity
G(V+k)p—p(V*+ k)G =V-(GVp—pVQG), (1.4)

where @ is any function of position, and integrating both sides over a volume, V', consisting
of all points outside S that are within some large sphere of radius R centered at the origin,

the identity becomes

—///ﬁ(v2+k2)advz—//(va—ﬁva)-ﬁdSHR, (1.5)
S
where

1R=R2/02W/0W (G%—ﬁ%)sin9d9d¢. (1.6)
This results occurs because the contribution from the first term of equation (1.4) is zero
because (V2 + k?)p = 0 within V' and Gauss’ theorem transforms the volume integration
over the right side into a surface integration. I is the surface integration over the outer
sphere.

Stipulating that G is a Green’s function which satisfies the inhomogeneous Helmholtz

equation,

(V* + k%) Gy (xly) = —4mé (x —y) , (1.7)

he left side of equation (1.5) becomes 47p(x) because of the integral property of the Dirac
delta function. If the Green’s function goes to zero at least as fast as %, I vanishes in the
limit of large R. Iy is identically zero for any sphere containing the surface and the point

Xo because the remaining terms in equation (1.5) are independent of the choice for R. For



Xo exterior to S, equation (1.5) reduces to

p(x) = —%// (GVp — pVG) - 7 dS (1.8)

where the integration extends only over the surface.

ei

Choosing the free space Green’s function, %, using Vp - i = iwpd,, and the following

relationship,
VG = Y "X (kR — 1) &R (1.9)
=" , i

the transient version of equation (1.8) can be found with a few variable changes. Prescribing

that iw — —2, R — r, and a factor e’** multiplying e ' is equivalent to shifting ¢t — 7,

the following equation is similar to equation (1.2),

1877/ ) )
p(x,t) = 471_// v y dS+4—m//er ( T)Iyds. (1.10)

Recognizing that €, - 7 = 9= and that —p% = Vp- i = 22 equation (1.2) is found.

1.4. Thesis Overview

Chapter 2 describes the two computational formulations of the Kirchhoff Integral The-
orem used in this thesis. One formulation mixes analytical and numerical techniques, while
the other calculates all of the Kirchhoff terms numerically. Some limitations on the shape
of the Kirchhoff surface are imposed by the formulations, and these limitations are also
discussed.

Chapter 3 discusses validation of the formulations with simple, classical cases (dipoles
and quadrupoles).!* The ability of the formulations to calculate accurate far-field pressure
and to separate sources operating at different frequencies is shown.

Chapter 4 discusses the discretization used in a computational version of the Kirchhoff
Integral Theorem. The grid point spacing, grid layer separation distance, time sampling,
and grid size and shape all affect the error in the far-field calculations. This error is explored
by varying these parameters.

Chapter 5 discusses the findings of this thesis and how they might be used. In addition,

suggestions for further research are given.



Chapter 2.

COMPUTATIONAL FORMULATION

In order to use the Kirchhoff Integral Theorem computationally, all of the terms of the
theorem must be shifted from the mathematical to the computational domain. Specifying
that the computational formulation is three dimensional, a computational grid represents

a

the Kirchhoff surface. The values of p, %, and 3%, normally known on the Kirchhoff surface,

must be determined analytically from an acoustic source equation or numerically from p

values on the grid. Another term, %, must also be ascertained by either analytical or
numerical techniques. Numerical schemes handle the integration in the Kirchhoff formula.

Three methods are used to calculate the far-field pressure from the validation sources.
The first method uses analytical expressions for far-field pressure and is only used for
error calculation by providing an analytical value for comparison to numerical methods.
Two computational approaches are used to calculate far-field pressure using the Kirchhoff
method: one which mixes analytical and numerical techniques and another which is fully
numerical. The analytical-numerical formulation uses analytical expressions for the terms of
the Kirchhoff formula and numerical integration techniques to arrive at far-field pressures.
The analytical-numerical formulation is limited to a single source and single grid shape
and is therefore used only for accurate validation of the fully numerical formulation and to
study the effects of changing radius for a spherical grid. The fully numerical formulation
calculates the equation terms and integrates the Kirchhoff equation numerically. The fully
numerical formulation is the method which would be used to calculate far-field pressures
from acoustic source distributions with no known far-field pressure expressions.

In both formulations, the far-field pressure, p, is found for a single time, ¢. This
pressure can be found for many instants in a period, and by calculating far-field pressure at
time samples that are closely spaced, the Kirchhoff method can approximate a continuous
pressure signal. From this pressure signal, a discrete time Fourier algorithm calculates the
magnitude of a Fourier component for a single frequency at a single point in the far-field.
The number of samples in a period necessary for accurate calculations is discussed in section
4.1.4. By calculating this Fourier component at closely spaced far-field points, the method

can determine far-field pressure directivities based on single frequencies. Directivity for this



thesis is a polar plot of the Fourier component magnitude of pressure at a single frequency
versus the angle at which the pressure oscillation is observed. The angles for the directivity
plots are 1° apart, providing enough points in the directivity plane to show the detail of the
plots.

A set of Fortran programs listed in the Appendix actually calculates the far-field acous-
tic pressures using the techniques described in this chapter. The numerical method de-
scribed in section 2.3 follows the steps of grid generation, pressure definition, and then
Kirchhoff calculation. The programs Grid.f, Press.f, and Kirch3.f provide these steps
for the cases shown in chapters 3 and 4. To calculate the far-field pressures from a com-
putational fluid dynamics simulation, the simulation program would have to provide a
computational grid and the pressures on it. The analytical method described in section 2.2
follows the same steps, but they are all contained in one program, K3A.f, so it is possible

to study the effects of varying the radius of a spherical Kirchhoff grid.

2.1. Computational Grid Formulation

A computational grid is a set of points that lie on the surface of a conceptual three-
dimensional object and is often referred to by the shape that its points describe, e.g., a
cylindrical, spherical, or conical grid. Several example computational grids are shown in
figure 2.1. The grid represents the Kirchhoff surface for the computational formulations
described in this chapter, and therefore determines the spatial locations where the values
of the Kirchhoff terms are calculated.

The % terms of the Kirchhoff equation require special treatment at sharp grid edges,
because normal vectors are undefined along edges. Rounding the corners of the computa-
tional grids avoids edges and the problems associated with finding the normal vector along

them.

For the formulations used in this thesis, computational grids are expected to be ax-
isymmetric, because axisymmetry allows analytical and accurate calculation of the areas of
small patches of the surface for surface integration. The calculated areas are equal circum-
ferential divisions of a cone cut parallel to its base. Figure 2.2 shows this surface, called a
frustum, which has two radii, one which may be zero, and a height, h, which is the distance

between the plane of the cone’s base and the plane of the cut. This area of one patch is
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Figure 2.1: Several computational grids (Kirchhoff surfaces).



calculated as

2
ds = 2rish (2.1)

ncirc’
where R; is the average of the two radii, and ncirc is a program variable representing
the number of circumferential points in the grid. This formula is derived from a cone

mensuration formula given in the CRC Standard Math Tables.*

A+B
2

Figure 2.2: Area patches for surface integration (R; = ncirc =4).

Because the numerical % term calculations depend on a second-order forward differ-
ence scheme which is discussed in section 2.3, the fully numerical formulation requires the
computational grid to have exactly three layers, each with the same number of grid points.
Corresponding points on different layers must form lines normal to the represented Kirchhoff
surface. Computational fluid dynamics simulations generate enough geometry information
that the requirement that corresponding points lie along normal lines is not difficult to

achieve.
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2.2. Analytical-Numerical Formulation

In order to solve the Kirchhoff Integral Theorem, the analytical-numerical formula-
tion uses a mixture of analytical expressions for the terms of the Kirchhoff integrand and
numerical integration techniques. This formulation starts with the equation for a lateral

quadrupole with constituent monopole sources placed on the x and y axes which is given as
A )
p=pcos (20) gikR-wt) (2.2)

where A is the quadrupole strength, and R is the distance from the source. This is found
by rotating the lateral quadrupole given by Piercel! 45°, specifying that @ in his geometry is
90°, and using the identity that sin 2a = 2sina cos a. In equation (2.2), 8 is the angle from
the x axis towards the y axis in the z-y axis, which is given as ¢ in Pierce’s quadrupole

geometry.

% js found by taking the derivative of p with respect to the normal vector, which is
on

shown in equation (2.3),
dp A

—= = = cos (20) ¢! *R-wt) (

ikR—1
== % 7) : (2.3)

RZ
The normal vector must lie along a radial line (7 = ﬁ) which specifies that this grid is
spherical. The derivative with respect to time is given by

@ B —1Aw
0 R

cos (26) e'(FF-wt) (2.4)

and the % factor in the Kirchhoff terms is given by

o 7
on |7 Il

where r = ||7|| (2.5)

and 7 is a vector pointing from y to x. These equations allow a computationally quick
and mathematically simple way to determine the Kirchhoff terms on the grid. Once the
computational term values are calculated, the analytical-numerical method uses numerical
techniques to integrate over the grid and compute the far-field pressure.

Using analytical expressions, however, limits both the computational grid shape and
the source type. Choices for each must be made when determining the equations for the
Kirchhoff terms. Equation (2.3) depends on a spherical grid where 7 = R. Equations (2.2),
(2.3), and (2.4) exhibit spherical spreading with a quadrupole directivity, cos(26), assuming



11

kd < 1, where d is the separation distance of the quadrupole’s constituent monopole sources.
Modifying the directivity of the source by changing the dependence on 6 is simple, but to
alter the shape of the grid, significant changes would have to be made in equation (2.3).
Although using analytical expressions for Kirchhoff terms imposes the above limitations,
the analytical expressions allow validation of the fully numerical method and study of the
effect of changing spherical grid radius. Because of the relationship between the analytical-
numerical formulation and the fully numerical formulation, the difference between the two
is error caused by the numerical schemes for calculating the Kirchhoff terms. Specifying a
range of radii for a spherical grid shows how the size and resolution of the grid affect the

far-field pressure calculations.

2.3. Fully Numerical Formulation

Because the fully numerical method computes the terms of the Kirchhoff equation
numerically from the pressure history on the computational grid, no prior knowledge of
the grid or the pressure generating mechanisms is required, although those mechanisms will
probably be extensive simulations of acoustic sources. The grid and corresponding pressures
could even be acquired from elaborate measurements of turbomachinery. The benefit of this

formulation is its versatility.

a

and the normal vector, 5=, have com-

The partial derivatives with respect to time, %,

plicated formulations. The time derivative is found by a centered difference scheme,®

@ _ DPt+At — Pi- At

ot 2At ’ (2.6)

where p;,a; and p; a; are, respectively, the pressures at the time sample after and before
the time sample at which the partial derivative is calculated. This numerical formulation
requires the pressure history to be exactly one period, so % at the first time sample can be
calculated using p at the last time sample, and vice versa.

The numerical method calculates the % and % terms of the Kirchhoff equation us-
ing a second-order forward difference scheme based on values at three points. The three
points are corresponding points in the three-layered computational grid. Because the grid
is expected to be generated by a computational fluid dynamics simulation prior to the use

of the Kirchhoff Integral Theorem, the grid layer which is closest to the acoustic source
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distribution is chosen as the single layer which actually lies on the Kirchhoff surface. This
choice is made because the grid points in directions orthogonal to the surface normal will
more closely space than in the other two layers. Chapter 4 shows that large point spacing

can be a source of error. Because of the choice of the first layer as the Kirchhoff surface,

2

37 terms.

the forward difference scheme becomes necessary to find the

The following is a general formulation to find the spatial derivative for a function, f(x),
and can be applied to both p and r. As shown in figure 2.3, three points, x;, x5, and xs,
located along a line normal to a surface, give the values f(z1), f(z2), and f(z3) for f(z).
x, is Az, from z,, x5 is Az, from x5, and let Az, = Az, + Ax,. Taking the Taylor series®

of f(z2) and f(z3),

fz2) = f(z1) + Azy f' (z1) + A;%f” (1) + -+ (2.7)
Flxs) = f (1) + Az f' (z1) + Ax?f” (1) + -+, (2.8)

2
multiplying equation (2.7) by Az? and equation (2.8) by Az?, subtracting the second prod-

uct from the first, and disregarding terms with Az* or smaller values,

0f ()  (—2AzAzy — Azd) f (z1) + (Azy + Azs)’ f (22) — Ax?f (z3) (2.9)
or Az Az, (Azy + Azy) '

where f'(z) = %(f) and f"(z) = 24(z) Because Ty, Ts, and x5 are along a normal, 22 = 1,

922 ]

and if f(z) = p(x,t), then
o _3f @) de _9f(x)
on  Ox 0n  Ox

The % term can be found in a similar way. This formulation handles grids with unevenly

(2.10)

spaced layers, i.e., Ax; # Ax,.

2.4. The Fourier Algorithm

The magnitude of the Fourier component at a single angle is found from the pressure
history calculated at that angle by a discrete time Fourier transform. The transform com-
putes the Fourier component for a discrete frequency from the sampled pressure history.

The formula for this is given by

F.=Y p(m)e™’At, (2.11)
m=1
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Figure 2.3: Three corresponding points in different grid layers.
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where F is the Fourier component, n; is the number of samples in one period of oscillation,
p(m) the sampled pressure history, and At is the size of the steps in time. w, represents

the discrete frequency of interest, so only a component and not a function is found.

2.5. Summary

Computational grids represent Kirchhoff surfaces and provide locations for a compu-
tational version of the Kirchhoff method to calculate the terms of the Kirchhoff equation
either analytically or numerically. Sharp edges on the surface require special attention when
moving to the computational grid to avoid ambiguity in the direction of normal vectors.
Both formulations expect an axisymmetric grid, and the fully numerical formulation also
requires that the grid have three layers with corresponding points on increasing layers placed
along lines normal to the surface represented, which should not be a difficult requirement
of the computational fluid dynamics.

Analytical expressions for the Kirchhoff terms predetermine the computational grid and
the source. This allows validation of the fully numerical method and study of changing the
radius of a spherical computational grid. The fully numerical formulation is more versatile,
however, since it finds the Kirchhoff terms numerically. % is found through a centered
difference scheme and % is found through a second-order forward difference scheme. The
benefit of using the forward difference scheme to find % is that only pressure terms need
to be known at the grid points. These terms are calculated at the first grid layer which lies
on the Kirchhoff surface. This surface surrounds the acoustic source distribution and any
nonlinear effects the distribution generates.

The directivities found in subsequent chapters are plots of the magnitude of a single

Fourier component at each of the directivity angles. This Fourier component is calculated

for a single frequency, w,., by a discrete time Fourier transform.



Chapter 3.
VALIDATION

Simple, classical sources, like the dipole and the quadrupole, have known far-field di-
rectivities and are therefore used as validation cases. They can be used to establish trust in
the formulations shown in chapter 2. Keeping an eye toward turbomachinery, a ring source
is used to check the fully numerical method. A ring source is a circular ring of monopoles
vibrating at the same frequency with a particular phase relation and has been shown to
simulate the fields generated by rotating sources.!> Because the complexity of the ring
source prevents the use of simple analytical equations to determine values of the Kirchhoff
terms, the analytical-numerical method is not validated with the ring source.

To provide easy comparison, the directivity plane, shown in figure 3.1, is the z-y plane
for all directivity plots, all source strengths are set to provide 1 Pa of pressure at the distance
of the observer location, and all sources are centered at the origin. A quadrupole source with
constituent monopole sources on the  and y axes is chosen for most of the validation cases
because, even though it is not axisymmetric with respect to the axis of radial symmetry of
the grid, it can point out problems in the grid that might be missed with a simpler source.

The analytical-numerical formulation is tested using a quadrupole and a spherical
grid and the pressure calculated is compared to that found by analytical means from a
quadrupole source. The fully numerical formulation is tested using the same source and
grid and is compared to pressures found analytically from the same quadrupole source.
The difference between the two formulations is also shown to show the difference between
calculating the Kirchhoff terms analytically and numerically. The fully numerical method
is also validated with different combinations of quadrupoles and ring sources, and spherical
and cylindrical grids.

For this and subsequent chapters, the following notation will be used for brevity in
figures: d; is the grid layer separation distance, [, is the length of the side of a cylindrical
grid, n,, is the number of axial points in the grid, n., is the number of circumferential
points in the grid, n; is the number of samples in one oscillation of the source, R is the
distance from the source to the far-field observer point, r, is the radius of the spherical grid,

and r, is the radius of the cylindrical grid.



16

ty

directivity

plane/\/d/

T

+X

+z

Figure 3.1: The directivity plane with a cylindrical Kirchhoff surface.

3.1. Far-Field Pressure

Figure 3.2.a shows the analytical-numerical method compared to the far-field directiv-
ity of a lateral quadrupole in the z-y plane with constituent monopoles on the z and y
axes. Equation (3.1) gives the far-field pressure of a quadrupole with sources that are close

together compared to wavelength, A,
A .
p = pcos (20) gikR-wt) (3.1)

where A is the quadrupole strength, and R is the distance from the quadrupole source. 8 is
the angle from the x axis toward the y axis in the z-y plane. As stated in section 2.2, the
analytical-numerical formulation depends on a spherical computational grid.

Figure 3.2.b is the error between the analytical-numerical method and the field found

by analytical means from a quadrupole source. Error is defined in this thesis as

lps — Pal
maxp,

(3.2)



RN, analytical quadrupole
analytical-numerical -------

error

B T

b. Error between the directivities shown in a.

Figure 3.2: Quadrupole source validation of the analytical-numerical for-
mulation with a spherical grid (n,, = 30, n., = 40, n; = 60, R = 10.3),
rs = 2A).
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where p; is the Fourier component of the pressure of the formulation, p, is the Fourier com-
ponent of the pressure of the field found by analytical means, and max p, is the pressure
value of the analytical quadrupole at an antinode. This definition for error shows the differ-
ence between pressure found from a quadrupole by analytical means and from a formulation
with respect to a value that is not dependent on directivity angle. The maximum scale of
this plot is set to 0.1 Pa which is 10% of the analytical quadrupole’s far-field pressure at an
antinode. All error plots in this thesis share this same scale for easy comparison with other
error plots. The consistent errors seen at 45°, 135°, 225°, and 315° are at the nodes of the
quadrupole.

In figure 3.3, the fully numerical formulation shows error levels similar to the analytical-
numerical method for a spherical grid around a quadrupole, but the errors occur at slightly
different directivity angles. A comparison of the two methods is shown in figure 3.4, where
the plot points out the difference between calculating the terms of the Kirchhoff equation
analytically and numerically.

A cylindrical grid is used for the calculations shown in figure 3.5. At directivity angles
near 0° and 180°, the error levels are larger than those found using a spherical grid, and
the error seen at the quadrupole nodes is spread over more directivity angles. The reason
for the change in the placement of error is not known.

Figure 3.6 shows the far-field directivity of a ring source calculated by the fully numerical
method using a spherical grid. Note the small error compared to the other combinations of
sources, formulations, and grid shapes.

Figure 3.7, which uses a cylindrical grid to validate the ring source, contains significantly
more error than the other validation cases. This error is located at angles where the source
value is low, which may make the error negligible for turbomachinery applications. The
far-field pressure calculations for the cylindrical grid are less accurate for some sources than

for others.

3.2. Frequency Separation
Figure 3.8.a shows that the Fourier algorithm is effective in separating pressure direc-
tivities due to two sources vibrating at different frequencies. A lateral quadrupole source

operating at a frequency of 686 Hz is in the same space as a dipole source with constituent
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fully numerical -------

error

B

b. Error between the directivities shown in a.

Figure 3.3: Quadrupole validation of the fully numerical formulation
with a spherical grid (d; = 0.01\, n,, = 30, n.,. = 40, n; = 60, R = 10.3),
rs = 2A).
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Figure 3.4: Comparison of the analytical-numerical and fully numerical
formulations using a quadrupole source and a spherical grid (d; = 0.01\ [for
the fully numerical method only], n,, = 30, n., = 40, n; = 60, R = 10.3),
rs = 2A).
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Figure 3.5: Quadrupole validation of the fully numerical formulation
with a cylindrical grid (d; = 0.01\, I, = 4\, ny, = 32, n.,. = 40, n; = 60,
R =103\, r. = 2)).
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Figure 3.6: Ring source validation of the fully numerical formulation with
a spherical radius grid (d; = 0.01\, n,, = 32, n., = 40, n; = 60, R = 10.3),
rs = 2)). The ring source contains 32 monopoles in a ring with a radius
of 0.125)\ around the z axis. The phase of each monopole source increases
by {5 radians around the ring.
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Figure 3.7: Ring source validation of the fully numerical formulation
with a cylindrical grid (d; = 0.01\, I, = 4\, ny, = 32, n.. = 40, n, = 60,
R =10.3\, 7, = 2)). The ring source contains 32 monopoles in a ring with
a radius of 0.125\ around the x axis. The phase of each monopole source
increases by {; radians around the ring.
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monopole sources located on the x axis operating at a frequency of 343 Hz. Because the
shortest wavelength of interest is 0.5 m for this case, the number of axial and circumferential
grid points are doubled. Section 4.1 discusses grid point spacing issues. The far-field pres-
sure along the +x axis is shown in figure 3.8.b. The Fourier algorithm is able to separate the
two source directivities from the total pressure signal at each directivity angle and produce

the pressure directivities shown in figure 3.8.a.

3.3. Summary

The validation cases in this chapter indicate that the computational Kirchhoff formula-
tions shown in chapter 2 can calculate far-field pressures, but the grid has an impact on the
error in the calculations. Chapter 4 examines how the grid point spacing, size, and shape

and time sampling all affect the error in the far-field pressure.



a. Directivities of the two sources at different frequencies.
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Figure 3.8: Validation of frequency separation using a dipole source with
a frequency of 343 Hz and a quadrupole source with a frequency of 686 Hz
with a spherical grid (d; = 0.01\, n,, = 60, n., = 80, n; = 60, R = 10.3),
Ty = 2X).
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Chapter 4.
DISCRETIZATION AND THE KIRCHHOFF GRID

Without a viable grid, a computational formulation of the Kirchhoff method cannot
accurately calculate far-field pressure. This chapter discusses the issues involved in creating
a usable grid and discretizing the grid and pressure histories.

One of the characteristics of a grid is its point spacing. For a given grid size, the
distance between two consecutive grid points is determined by the total number of points
on the grid. For the grid generation algorithms used in the formulations described in chapter
2, the number of grid points is determined by two program variables, naxis and ncirc,
which, respectively, specify the number of axial and circumferential grid points. The grid
point spacing of a computational grid can have a significant effect on the far-field pressure
calculations, especially if the grid is too sparse.

In the fully numerical formulation, the separation distance between grid layers also
plays a key role in accurate far-field calculations. It is important to specify that the layer
distance is very small compared to a wavelength, because the forward difference scheme
used for the % and % factors depends on small values of Az, as shown in section 2.3. The
actual values for grid layer separation are discussed in section 4.1.3.

The Fourier algorithm cannot accurately determine the contribution of a particular
frequency to the far-field pressure without enough time samples in a period of pressure
oscillation. The accuracy of the directivity of the far-field pressure depends on accurate
frequency contribution values. Section 4.2 discusses the number of time samples necessary
to generate accurate far-field pressures using the discrete time Fourier algorithm.

The size and shape of the grid also affect the pressure calculations. According to the
Kirchhoff Integral Theorem, the Kirchhoff surface must be large enough to enclose any
nonlinearities of the source, and cannot extend out beyond the far-field observer point.
These restrictions are upheld by the computational formulation, and are shown in section
4.3. The shape of the grid can have an effect on the far-field pressure calculations, which is
shown in section 4.4.

All distances in this chapter are specified in terms of wavelength, A, because all spacings

of the grid and the far-field distance depend on A. If the wavelength of the source is changed
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by changing either the frequency or the speed of sound, then all distances must be adjusted

accordingly.

4.1. Grid Point Spacing

Grid point spacing refers to the distance between the points which comprise a com-
putational grid and how those points are arranged. The axial grid point spacing is the
distance between points a grid contains in the direction of the axis of radial symmetry,
the x axis in all of the cases shown in this thesis. The circumferential grid point spacing
specifies the distance between points around the axis. On a globe, axial lines correspond to
longitude lines, circumferential lines correspond to latitude lines, and the axis of symmetry
runs through the North and South Poles.

The distance between grid points, determined by the grid array dimensions, must be
below a certain threshold for the Kirchhoff method to work effectively, but the dependence
of the far-field pressure on the axial grid point spacing is different from the dependence on
the circumferential grid point spacing. Each grid point spacing controls different aspects
of the density of grid points. Figure 2.1.b shows a spherical grid with more axial than
circumferential points and figure 2.1.c shows a spherical grid with more circumferential
points than axial. The axial and circumferential grid point spacings are therefore explored
separately.

When error is caused by the distance between points in the axial and circumferential
directions at the same time, the effects are not directly additive. The total error is sig-
nificantly less than the two errors simply added together. Because the density of points
changes over the surface of a grid, it is difficult to specify how the effects from the two
different directions interact.

The shape of the grid can affect its dependence on point spacing, therefore plots are
generated for both a spherical and cylindrical grid. Because the analytical-numerical for-
mulation is tied to a spherical grid, the fully numerical formulation is used to calculate
the far-field directivities for the two differently shaped grids. This keeps the error between
different grid shapes specific to the point spacing effects.
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4.1.1. Axial Grid Point Spacing

4.1.1.1. Spherical Grid

The maximum axial distance between grid points, d,,, in a spherical grid is given by

Ty

dam =

 naxis’ (41)
where 7, is the maximum radius of the spherical grid and naxis is a program variable that
represents the number of axial grid points. naxis is the first number given in the grid
array dimensions in this thesis. A 17x24 grid therefore indicates a grid with 17 axial points
(naxis = 17), and 24 circumferential points.

Figure 4.1 shows directivities for successively larger axial grid spacings, along with the
error between each directivity and the pressure field generated by an analytical quadrupole.
The lowest axial grid array dimension shown is the highest axial grid array dimension which
causes a maximum local error of greater than 10% of the antinode pressure of the analytical
quadrupole. A low axial grid array dimension refers to a small number of axial points, and
a high axial grid array dimension refers to a grid with many axial points. Local error is
defined as the difference between the far-field calculation and the pressure generated by an
analytical quadrupole multiplied by the value of the analytical quadrupole each divided by
the pressure of the quadrupole at an antinode. Specifically, local error is given by

‘pf - pa| Da
maxp, maxp,

(4.2)

The seven directivity plots which lead up to the largest axial grid spacing are also shown.

Local error is used to examine the difference between the pressure generated by a
formulation and the pressure generated by a quadrupole found by analytical means with
the difference scaled by the pressure from the quadrupole at the specific directivity angle
of calculation. The benefit of local error is that the error seen at the antinodes is given
more weight than the error at the nodes. Local error therefore helps in presenting the error
generated by varying grid parameters, because the constant error seen at the nodes of the
quadrupole becomes negligible. dB local error is also shown in several plots and is 20 times
the log of the difference between the pressure found from a formulation and analytically

from a quadrupole scaled by the pressure value of the quadrupole at the directivity angle



Figure 4.1: Directivity and error plots of successively larger axial grid
point spacing for a 343 Hz quadrupole using a spherical grid (d; = 0.01),
ny = 60, R = 10.3\, r, = 2)\). Each directivity and error plot is labeled
with its corresponding grid array dimensions.
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of calculation relative to the maximum pressure value of the quadrupole. Specifically, dB

local error is given as

max p, maxp,

Figure 4.2 shows the directivities of the same grids as figure 4.1, but the error plots are
of local error. Figure 4.3 shows the maximum local error of the same grids as in figures 4.1
and 4.2 versus the axial grid array dimensions. The data shown in figure 4.3 is discrete, and
the line drawn between discrete data points is only there as a visual aid. The 10x40 grid
is the first grid which exceeds a local error of 10%, so according to table 4.1 the maximum
axial point spacing for the grid must be less than ~0.57\ to ensure a local error of less than
10%. Table 4.1 is generated from equation (4.1) by specifying the number of axial points
for the spherical grids used in figures 4.1-4.3.

Table 4.1: Axial grid array dimensions and maximum axial grid spacing
for a spherical grid.

naxis Aoz
10 0.63A
11 0.57A
12 0.53A
13 0.48\
14 0.45)\
15 0.41)
16 0.39A
17 0.37A

4.1.1.2. Cylindrical Grid

Discussion of a cylindrical grid is simplified by naming the circular end-caps in terms of

their computational fluid dynamics characteristics. One of the end-caps is called the inlet
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Figure 4.2: Directivity and local error plots of successively less dense axial
grid resolutions for a 343 Hz quadrupole using a spherical grid (d; = 0.01),
ng = 60, R = 10.3\, ry = 2)).
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Figure 4.3: Maximum local error for successively larger axial grid point
spacing for a 343 Hz quadrupole using a spherical grid (d; = 0.01\, n; = 60,
R =10.3), ry = 2)).
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end-cap, and the other is called the outlet end-cap. Because there is no flow in these
computations, this is purely a matter of nomenclature.
The formula for the maximum axial grid point spacing, d,,, depends on where the d,,

is located. If d,, is on the side of the cylinder, then d,, is given as

Aoy = Ls
“” " naxis — nptinlrad — nptotlrad’

(4.4)

where [, is the length of the cylinder’s side, nptinlrad is a program variable representing the
number of axial points contained in the inlet end-cap, and nptotlrad is another program
variable representing the number of axial points in the outlet end-cap. If the d,, is found
on the inlet end-cap, then d,, is given as
s

doy = npt#"imi , (4.5)
where r;,,; is the radius of the inlet end-cap. If d,, is found on the outlet end-cap, then d,,
is given as

dpy = — 2 (4.6)
nptotlrad

where 7., is the radius of the outlet end-cap. For a cylindrical grid, r;,; and r.; are the
same, but for a conical grid they are not.

Figure 4.4 shows directivity plots produced from cylindrical grids with successively
larger axial grid resolutions. This figure also shows the error between the pressure field
calculated by the fully numerical formulation and the pressure field found from an analytical
quadrupole. Figure 4.5 shows the cylindrical grid pressure directivities with local error plots,
and figure 4.6 shows the maximum local error versus axial grid array dimension. From the
local error plots, the grid that exceeds a local error of 10% is the 21x40 grid. Because the
maximum axial spacing is forced to be along the side of the cylinder, table 4.2 gives the axial
grid spacing between the two most distant, consecutive axial points using equation (4.4).
An axial grid spacing of no more than ~0.40) is necessary to have less than 10% maximum
local error for a cylindrical grid.

The requirement that axial grid points be no more than ~0.40\ apart for a maximum
local error of less than 10% is stricter than for a spherical grid, which requires the spacing
to be no more than ~ 0.57\ for the same maximum local error. One possible reason for
this is that the maximum axial spacing causes a larger portion of a cylindrical grid to be

sparsely covered by points than the maximum axial spacing does on a spherical grid.
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Figure 4.4: Directivity and error plots of successively larger axial grid
point spacing for a 343 Hz quadrupole using a cylindrical grid (d; = 0.01),
l, =4\ ny; =60, R=10.3\, . = 2A).

34



Figure 4.5: Directivity and local error plots of successively larger axial
grid point spacing for a 343 Hz quadrupole using a cylindrical grid (d; =
0.01\, I, = 44X, ny = 60, R = 10.3\, 7. = 2)).
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Figure 4.6: Maximum local error plots of successively larger axial grid
point spacing for a 343 Hz quadrupole using a cylindrical grid (d; = 0.01),
l, =4\ ny; =60, R=10.3\, . = 2A).
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Table 4.2: Axial grid array dimensions and maximum axial grid point
spacing for a cylindrical grid.

naxis Aoz
21 0.44\
22 0.40)
23 0.36
24 0.33A
25 0.31A
26 0.29A
27 0.27A
28 0.25\

4.1.2. Circumferential Grid Point Spacing

4.1.2.1. Spherical Grid

The maximum circumferential grid point distance, d.,, for a spherical grid is given by

d,, = 2 (4.7)

cr — . ’
ncirc

where 7, is the radius of the grid for a constant x and ncirc is a program variable rep-
resenting the number of circumferential points in the grid. ncirc is written second in the
grid array dimensions in this thesis, so for a 20x22 grid, ncirc = 22.

Figure 4.7 shows directivities for successively larger circumferential grid point spacing
on a spherical grid along with the error between each pressure field and the field generated by
analytical means from a quadrupole. Figure 4.8 shows the same directivities with the local
error. Figure 4.9 arranges the maximum local error to compare circumferential grid array
dimensions. From the local error plots, the grid with the lowest circumferential grid array
dimension which still has a local error of less than 10% is the 30x18 grid. From table 4.3,
which is generated from equation (4.7), the maximum circumferential point spacing for this

grid is ~0.70\.



Figure 4.7: Directivity and error plots of successively larger circumfer-
ential grid point spacing for a 343 Hz quadrupole using a spherical grid
(d; = 0.01\, ny = 60, R = 10.3\, 7, = 2)).
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Figure 4.8: Directivity and local error plots of successively larger circum-
ferential grid point spacing for a 343 Hz quadrupole using a spherical grid
(d; = 0.01\, ny = 60, R = 10.3\, 7, = 2)).
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Figure 4.9: Maximum local error for successively larger circumferential
grid point spacing for a 343Hz quadrupole using a spherical grid (d; =
0.01\, n; = 60, R = 10.3\, 7, = 2)).
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Table 4.3: Circumferential grid array dimensions and maximum circum-
ferential grid point spacing.

ncirc der
17 0.74)
18 0.70A
19 0.66
20 0.63A
21 0.60A
22 0.57A
23 0.55\
24 0.52)\

The odd circumferential grid array dimensions produce a large error when used with
the quadrupole sources placed as they are because the quadrupoles are not axisymmetric
with respect to the grid axis. When an odd number of circumferential grid points surrounds
a quadrupole, a point is directly above the antinode at the +y axis, but there is no corre-
sponding grid point directly below the antinode at the —y axis. This circumferential spacing
of grid points for odd values of ncirc causes the extra sensitivity to the non-axisymmetric

quadrupole.

4.1.2.2. Cylindrical Grid

Plots of directivity calculated on a cylindrical grid for successively larger circumferential
grid spacing by the fully numerical method are shown in figure 4.10 along with plots of the
error between the calculations and the field found from a quadrupole by analytical means.
Figure 4.11 shows the local error associated with each grid array dimension and figure 4.12
arranges the maximum local error by circumferential grid array dimension.

As with the spherical grid, the maximum circumferential grid distance is calculated by
equation (4.7). The same formula is used because the maximum radius of the cylinder or
the sphere seen in the y-z plane is the same. The same grid resolution as for the spherical
grid, 30x17, is the first cylindrical grid to exceed the 10% local error limit that is used in
this thesis. The 30x18 grid, which ensures a local error of less than 10% for the cylindrical



Figure 4.10: Directivity and error plots of successively larger circumfer-
ential grid point spacing for a 343 Hz quadrupole using a cylindrical grid
(d; = 0.01)\, I, = 4\, ny = 60, R = 10.3\, r. = 2)).
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Figure 4.11: Directivity and local error plots of successively larger cir-
cumferential grid point spacing for a 343 Hz quadrupole using a cylindrical
grid (d; = 0.01\, I, = 4\, ny = 60, R = 10.3\, 7. = 2)).
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Figure 4.12: Maximum local error plots of successively larger circumfer-
ential grid point spacing for a 343 Hz quadrupole using a cylindrical grid
(d; = 0.01)\, I, = 4\, ny = 60, R = 10.3\, r. = 2)).
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grid, has a maximum circumferential grid point spacing of ~0.70 from table 4.3 which was

generated from equation (4.7).

4.1.3. Grid Layer Separation
The separation distance between the layers of a grid has an extreme effect on the

pressure calculations. To examine this effect, figure 4.13 shows %ﬁf)

, 38 given by the
should be 1,

forward difference scheme shown in equation (2.9) for f(z) = sinz. M’;wﬂ .

of(z)

which it is as Az — 0, however, as Az increases even slightly, <7

varies considerably.
0

Figure 4.14 shows how the % formulation in section 2.3 affects the pressure calculations

as the separation distance between grid layers increases. The bottom plot is an enlargement

of the box shown in the top plot. The effect shown is not surprising because each term in
8

the Kirchhoff equation has a 5> factor which is based on the % formulation shown in

equation (2.9).

4.2. Time Sampling

Figure 4.15 shows the far-field pressure around a quadrupole for a range of samples
in a period of oscillation and the error between the pressure fields calculated by the fully
numerical method and obtained by analytical means from a quadrupole. Figure 4.16 shows
the same range of samples in a period and local error plots, and figure 4.17 is a graph of
the maximum local error versus the number of samples in a period. Only 15 time samples

are needed in one period to give a local error of less than 10% for a spherical grid.

In figure 4.18, The Fourier algorithm is tested by itself for sampling error. As the
number of samples in a period of pressure oscillation increases, the acoustic pressure of a
343Hz quadrupole source is calculated more closely to its actual value of 1Pa along the +x

axis. This trend agrees with the sampling error shown in figure 4.15.

4.3. Size of the Computational Grid

Assuming that the grid point spacing is appropriate, there are still limitations on the
computational grid. It must not extend beyond the far-field observer point, x and must be

large enough to allow accurate pressure calculations. These size issues are discussed in the
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Figure 4.15: Directivity and error plots of successively fewer time samples
in a period for a 343 Hz quadrupole using a spherical grid (d; = 0.01),
Nz = 30, ne, = 40, R = 10.3\, ry, = 2)\). Each plot is labeled with its
corresponding number of samples in a period.
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Figure 4.16: Directivity and local error plots of successively fewer time
samples in a period for a 343 Hz quadrupole using a spherical grid (d; =
0.01\, ny, = 30, ne,, =40, R = 10.3\, 7y = 2)).
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Figure 4.17: Maximum local error plots of successively fewer time sam-
ples in a period for a 343 Hz quadrupole using a spherical grid (d; = 0.01),
Ngz = 30, ne,. =40, R = 10.3\, r, = 2A).
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next two sections. The analytical-numerical formulation provides the far-field calculations

for the grid size plots because grid radius is easy to vary with this formulation.

4.3.1. Maximum Grid Size

No part of the grid may extend beyond the far-field observer point, x. If it does,
then the pressure is calculated to be zero. This follows from the Kirchhoff formulation
described in section 1.2, because ® is required to satisfy the wave equation, only outside of
the Kirchhoff surface. Figure 4.19.a shows the results when the computational grid extends
beyond the far-field distance. A 70x70 grid resolution meets the grid spacing requirements

set forth in section 4.1 for a spherical grid with an r, = 3.5A.

4.3.2. Minimum Grid Size

The minimum size of the computational grid is limited by a condition imposed on the
Kirchhoff surface; it must surround any nonlinear effects. The Kirchhoff Integral Theorem
is based on the linear wave equation and therefore cannot account for nonlinear pressures.
The computational Kirchhoff formulation has a geometrical limitation which affects the
minimum grid size. Figure 4.19.b shows the behavior of the far-field pressure calculations

when the radius of a spherical computational grid approaches 0.

4.4. Grid Shape

The shape of the computational grid can have an effect on the far-field pressure calcula-
tions. Figure 4.20 shows a progression of grids that starts with a cylinder and becomes more
conical and the difference between the field generated from an analytical quadrupole and the
far-field pressure calculations. Figure 4.21 shows the directivity produced by the Kirchhoff
method using the grids in figure 4.20 along with the local error directivities. Figure 4.22

shows the maximum local error arranged by inlet end-cap radius.
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4.5. Summary

The computational grid is one of the most important elements of a working computa-
tional Kirchhoff method. It must meet requirements based on grid point spacing, grid layer
separation, and grid size and shape. Discretization in time is also an important element.
The grid point spacing depends separately upon the number of axial and circumferential
grid points. The shape of the grid can affect this dependence. The grid layer separation has
a strong effect on the far-field pressure calculations so it is both beneficial because it allows
the % to be calculated from only pressure values, and detrimental because it can cause
such significant error. The sampling of the oscillations of the source at all of the points on
the grid controls what frequencies can be calculated by the Fourier algorithm. The size of
the grid is limited by the specifications of the Kirchhoff Integral Theorem. The grid shape

can have an effect on the error of the far-field pressure calculations. The minimum values

for these requirements to maintain a local error of 10% are presented in this chapter.



Chapter 5.
CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

Despite the fact that the Kirchhoff Integral Theorem was formulated over 100 years
ago, it is only with the aid of modern computing resources that it has become useful for
calculating sound from complex sources. When using the theorem to calculate pressures
from sources with no known far-field pressure expression, the numerical techniques must
be trusted for validity as well as accuracy. This thesis presents enough information about
the sensitivity of a computational Kirchhoff method to ensure accurate results from the
method.

A Kirchhoff surface is represented by a computational grid so that the pressure values
at grid points are known analytically or are calculated numerically. The Kirchhoff terms
are integrated over the grid to find far-field pressures. These pressures are found at many
points in space and time to simulate a continuous pressure history in a plane. This method
provides a technique of numerically determining the far-field pressure field for a complex
source.

The validation of the computational formulations of the Kirchhoff Integral Theorem
shows that some error is unavoidable, but depending on the application this error can be
controlled to produce results of the desired accuracy. This method, therefore, is useful in
predicting the sound radiation from a source that is otherwise difficult to determine. Proper
specification of parameters is imperative in order to achieve accurate results, as shown by the
sensitivity of the calculations to certain grid and time parameters. The research conducted
indicates circumstances in which grid array dimensions or time sampling can be reduced in
order to save on computational resources.

The grid layer separation distance, shown to affect the calculations, is the strictest
requirement which must be fulfilled to achieve accurate calculations. A small change in the
separation distance produces a large error in the pressure calculations. This requirement
is significant for generating grids from computational fluid dynamics simulations because it

specifies a dense computational fluid dynamics grid at a distance away from the source.
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5.2. Recommendations for Computational Fluid Dynamicists

The information provided by this research can aid in the generation of computational
grids for use in the Kirchhoff Integral Theorem from computational fluid dynamics simu-
lations. By looking at the trends shown for grid point spacing in the circumferential and
axial directions, an appropriate number of grid points can be specified so error levels are
below desired levels and the time for computational work is not longer than needed because
of unnecessarily high point density.

Small changes in the grid layer separation distance cause significant error, so it is
important to specify a fine computational fluid dynamics grid in the area that will be used
for the Kirchhoff surface. The region for the Kirchhoff surface has to be far enough away
from the source to surround nonlinear effects, so the computational fluid dynamics grid is
usually coarse at this distance. The different density needs of these grids has to be resolved
to achieve useful results from the Kirchhoff Integral Theorem.

The shape of the grid can affect the error in pressure calculations from the Kirchhoff

Integral Theorem. Meadows and Atkins” discuss some issues with irregular grid shapes.

5.3. Recommendations for Further Research

Furthering research of the Kirchhoff method for turbomachinery simulations can allow
turbomachine manufacturers to build quieter engines at a lower production cost. This could
provide an increase in tractable land near airports due to reduced noise pollution.

There are many characteristics of turbomachinery which could be added to the Kirch-
hoff method used in this study which would provide more accurate noise calculations for
turbomachinery. Lyrintzis® provides steps for adding subsonic and supersonic flow to the
classical Kirchhoff formula. The addition of flow has been derived by Morgans® and Faras-
sat and Myers.? Morgans formulation was questioned by Ffowcs-Williams and Hawkings.?
Because turbomachinery has rotating parts, geometries and surfaces which move along with
the blades of the turbomachine could also be added.

Several areas could also be examined which are outside of the scope of this thesis.
Nonperiodic time histories could be used with a different formulation of the % term. A
method of specifying point placement on the grid so point density stays relatively constant

over the grid surface would aid in determining error based on density rather than axial and
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circumferential point spacing. Meadows and Atkins” discuss the effects of increasing the
order of the finite difference schemes used to find the % and % terms.

A wvariation in pressure calculated by the Kirchhoff Integral Method can be seen in
figure 4.19.b as the Kirchhoff surface radius varies for a spherical grid. A similar variation
in pressure occurs as the observer point changes in distance from the source. The cause
of these unexpected variations in calculated pressure could be important and should be
researched.

Another project for future research is a full simulation of a real turbomachine which
has been measured experimentally. The Kirchhoff method could be linked to the pressure
calculations of a computational fluid dynamics simulation to calculate the far-field pres-
sure. The computational results could be compared to experimental results for a real-world
validation of a computational version of Kirchhoff’s method.

Since the computational Kirchhoff method provides pressure histories at far-field points,
it is possible to use sound manipulation tools on computers to repeat the periods generated
and actually listen to the sound that a source makes. The sources used in this thesis would
emit single tones or combinations of single tones, while a source with a more complex set of
pressure histories, such as the output of a computational fluid dynamics simulation, would
produce a broader range of frequencies. Because the sound created by the simulation is
calculated at different directivity angles, it would be possible to put on headphones and

experience “walking around” the simulated turbomachine.
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pendix A.

SOURCE

A.1. Grid Program

A.1.1. Grid.const

* ———————— o ——
*
* Grid.const
*
* quest
* nodog
* 05may97
*
* RCS info
*  $Id: Grid.comst,v 1.1 1997/05/07 03:57:26 nodog Exp nodog $
*
* Grid.const holds several constants for Grid.f
*
* ——mm——— e ———
* gridshape constants
INTEGER sphere, cylinder
PARAMETER ( sphere = 1, cylinder = 2 )
* ——————— e ———

A.1.2. Grid.rc

k ————— _——————————— e

* Grid.rc
* is read by gridcyl.f to get many of

* gridshape: [INTEGER] 1=sphere where
1
* dstinl: [DOUBLE PRECISION] distance

2.0

* dstotl: [DOUBLE PRECISION] distance
-2.0

* dstgrdlvl: [DOUBLE PRECISION] distan
0.01

* radinl: [DOUBLE PRECISION] radius of

its constant values.

radius=radinl 2=cylinder

of the inlet plane from origin

of the outlet plane from origin

ce between grid levels

the inlet plane circle
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*

2.

*

11

*

11

*
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0

radotl: [DOUBLE PRECISION] radius of the outlet plane circle
0

nptinlrad: [INTEGER] number of points on an inlet radius

nptotlrad: [INTEGER] number of points on an outlet radius

beautgrid: [LOGICAL] beautify the grid for gnuplot

FALSE

A.1.3. Grid.f

*

¥R K K K K K K X K X K K K K K K X X K K X ¥ *

*

PROGRAM Grid

Prologue
$Id: Grid.f,v 1.8 1997/06/09 04:48:33 nodog Exp nodog $

Original program written by

Anderson Mills <nodog@sabine.acs.psu.edu>
at the Graduate Program in Acoustics

at Pennsylvania State University

Purpose:
Grid generates a grid (supposedly around a
turbomachine) which will be used by a pressure generating
program and a Kirchhoff surface solver to predict far field
noise.

Processing:
Parameters from Kirch3.dmn, Grid.const, and Grid.rc are
used to generate the grid. QOutput is stored in the file
Kirch3.grid.

Special requirements:
Just that Kirch3.dmn, Grid.const, and Grid.rc exist.

—————————————————— File Numbers ---- -

20 Grid.rc
29  Kirch3.grid

INCLUDE ’Grid.const’
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* Constants from Grid.rc --- see file for description
INTEGER gridshape, nptinlrad, nptotlrad
DOUBLE PRECISION dstinl, dstotl, dstgrdlvl, radinl, radotl
LOGICAL beautgrid

* Main Program

CALL Banner()

* Read in constants from Grid.rc - -
CALL GetGrConst (gridshape, dstinl, dstotl, dstgrdlvl, radinl,
& radotl, nptinlrad, nptotlrad, beautgrid)
* Based on the value of gridshape, call the correct grid subroutine

IF ( gridshape .EQ. sphere ) THEN

CALL GridSph (dstinl, dstotl, dstgrdlvl, radinl, radotl,
& nptinlrad, nptotlrad, beautgrid)

ELSEIF ( gridshape .EQ. cylinder ) THEN

CALL GridCyl (dstinl, dstotl, dstgrdlvl, radinl, radotl,
& nptinlrad, nptotlrad, beautgrid)

ELSE

WRITE ( #, * ) ’Grid shape is undefined.’
ENDIF
CALL Banner()

STOP
END

* Main Program

*
*
*
SUBROUTINE Banner()
*
* Prologue
*
* Purpose: Show the beginning and ending of the program.
*
* Code ———————=—— == -—=
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*

WRITE (%, *) ° ’
WRITE (*, *) ’> 88888 ’

WRITE (%, *) °> 8 8 88888 8 88888
WRITE (*, *) ’> 8 8 8 88 8’
WRITE (*, *) > 8 8888 8 888 8’
WRITE (*, *) °> 8 8 88888 8 8 8’
WRITE (*, *) ’ 8 88 8 88 8 °
WRITE (x, *) °> 88888 8 8 8 88888
WRITE (%, *) ° ?

RETURN
END

SUBROUTINE GetGrConst (gridshape, dstinl, dstotl, dstgrdlvl,
& radinl, radotl, nptinlrad, nptotlrad, beautgrid)

Prologue

Purpose:
To read in the constants from the Grid.rc file

Processing:
Uses READ’s to get the info in.

Special requirements:
Gotta have something to read, so the Grid.rc file must exist.

Constants from Grid.rc --- see file for description
INTEGER gridshape, nptinlrad, nptotlrad

DOUBLE PRECISION dstinl, dstotl, dstgrdlvl, radinl, radotl
LOGICAL beautgrid

—————————————————— Local declarations - - -

CHARACTER Dummy

—————————————————— Code -—=- -—=- it
OPEN (UNIT=20, FILE=’Grid.rc’, STATUS=’UNKNOWN’)
Three lines of comments at the top.
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1000) Dummy

Read constants from Grid.rc
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One blank line, one label line, then the constant.
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1010) gridshape
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1020) dstinl
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1020) dstotl
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1020) dstgrdlvl
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1020) radinl
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1020) radotl
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1010) nptinlrad
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1010) nptotlrad
READ (20, 1000) Dummy
READ (20, 1000) Dummy
READ (20, 1030) beautgrid

CLOSE (20)

1000 FORMAT (A)

1010 FORMAT (I10)
1020 FORMAT (F24.17)
1030 FORMAT (L5)

RETURN
END

SUBROUTINE GridSph (dstinl, dstotl, dstgrdlvl, radinl, radotl,
& nptinlrad, nptotlrad, beautgrid)

Prologue
Purpose: Generate a spherical grid and output it to file.

Processing: Basically run through the array of the grid and figure
out the X, Y, and Z coords of each point and output that to file.



* Special requirements:

*
*

* ¥ X ¥

———————————————— Include files —-- —-———=

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

Constants from Grid.rc --- see file for description
INTEGER nptinlrad, nptotlrad

DOUBLE PRECISION dstinl, dstotl, dstgrdlvl, radinl, radotl
LOGICAL beautgrid

Local declarations —_—
DOUBLE PRECISION pi

Axidex: Index in the axial direction.

Cirdex: Index in the circuferenctial direction.
Lvldex: Level index

INTEGER Lvldex, Cirdex, Axidex

Sigma: Angle around X axis from Y towards Z
DOUBLE PRECISION Sigma

Theta: Angle with the X axis.
DOUBLE PRECISION Theta

TempRad: Working radius
DOUBLE PRECISION TempRad

X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
DOUBLE PRECISION X(nlevels, O:ncirc, naxis)
DOUBLE PRECISION Y(nlevels, O:ncirc, naxis)
DOUBLE PRECISION Z(nlevels, O:ncirc, naxis)

CrStart: Starting count for circum. direction
LvlEnd: Ending count for level index
INTEGER CrStart, LvlEnd

Code —————————————————————————————————— -——=
pi = 4.0%ATAN (1.0)
OPEN (UNIT=29, FILE="Kirch3.grid’, STATUS=’UNKNOWN" )

IF (beautgrid) THEN
CrStart = 0
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LvlEnd = 1
ELSE
CrStart = 1
LvlEnd = nlevels
END IF

D0 Axidex = 1, naxis
Theta = ( pi*( Axidex - 0.5 ) )/( naxis )
DO Cirdex = CrStart, ncirc

DO Lvldex = 1, LvlEnd

Sigma

= ( 2.0*pi*Cirdex )/( ncirc )
TempRad =

ABS (radinl) + dstgrdlvl*( Lvldex - 1)

X(Lvldex, Cirdex, Axidex) = TempRad*COS (Theta)

Y(Lvldex, Cirdex, Axidex) TempRad*SIN (Theta) *
C0S (Sigma)

Z(Lvldex, Cirdex, Axidex) = TempRad*SIN (Theta) *
SIN (Sigma)

WRITE (29, 2000) X(Lvldex, Cirdex, Axidex),
Y(Lvldex, Cirdex, Axidex),
Z(Lvldex, Cirdex, Axidex)

FORMAT (3 ( 2X, E24.17 ))

END DO
Lvldex loop

END DO
Cirdex loop

WRITE (*, 2100) Axidex, naxis
FORMAT (’Finshed with step’, I5, ’ of’, I5)

For beautifying the grid (gnuplot’s splot).
IF (beautgrid) THEN

WRITE (29, 2200) *°

FORMAT (A)
END IF

END DO
Axidex loop

CLOSE (29)

RETURN
END
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SUBROUTINE GridCyl (dstinl, dstotl, dstgrdlvl, radinl, radotl,
& nptinlrad, nptotlrad, beautgrid)

Prologue
Purpose: Generate the cylindrical grid and output it to file.

Processing: Basically run through the array of the grid and figure
out the X, Y, and Z coords of each point and output that to file.

Special requirements:
Kirch3.dmn must exist.

—————————————————— Include files --- -——

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

—————————————————— Argument declarations -

Constants from Grid.rc --- see file for description
INTEGER nptinlrad, nptotlrad

DOUBLE PRECISION dstinl, dstotl, dstgrdlvl, radinl, radotl
LOGICAL beautgrid

Local declarations _—

DOUBLE PRECISION pi

dsttot: Total dist from inlet to outlet plane
DOUBLE PRECISION dsttot

Axidex: Index in the axial direction.

Cirdex: Index in the circuferenctial direction.
Lvldex: Level index

INTEGER Lvldex, Cirdex, Axidex

Sigma: Angle around X going from Y towards Z
DOUBLE PRECISION Sigma

TempRad: Working radius
DOUBLE PRECISION TempRad

X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
DOUBLE PRECISION X(nlevels, O:ncirc, naxis)
DOUBLE PRECISION Y(nlevels, O:ncirc, naxis)
DOUBLE PRECISION Z(nlevels, O:ncirc, naxis)

CrStart: Starting count of the circum index
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LvlEnd: Ending count of the level index
INTEGER CrStart, LvlEnd

—————————————— Code -——- - -

pi = 4.0%ATAN (1.0)

dsttot = dstotl - dstinl

radiff = radinl - radotl

sidelen = SQRT ( dsttot**2.0 + radiff**2.0 )

OPEN (UNIT=29, FILE=’Kirch3.grid’, STATUS=’UNKNOWN’)

IF (beautgrid) THEN
CrStart = 0
LvlEnd = 1

ELSE
CrStart = 1
LvlEnd = nlevels

END IF

DO Axidex = 1, naxis
D0 Cirdex = CrStart, ncirc
DO Lvldex = 1, LvlEnd

Sigma = ( 2.0*pi*Cirdex )/( ncirc )

Inlet plane calculations
IF ( Axidex.LE.nptinlrad ) THEN

X(Lvldex, Cirdex, Axidex) = dstinl + dstgrdlvl*
SIGN (1.0, dstinl)*( Lvldex - 1 )
TempRad = ( Axidex - 0.5 )*radinl/mptinlrad

Outlet plane grid points
ELSE IF ( Axidex.GT.( naxis - nptotlrad ) ) THEN

X(Lvldex, Cirdex, Axidex) = dstotl + dstgrdlvl#
SIGN (1.0, dstotl)*( Lvldex - 1 )

TempRad = ( ( naxis - Axidex + 1) - 0.5 )*
radotl/nptotlrad

Otherwise, must be a point along the side
ELSE

X here is adjusted by a delta to make the grid
layers be normal for conical grids.
X(Lvldex, Cirdex, Axidex) = dstinl +
dsttot*( ( Axidex - mnptinlrad ) - 0.5 )/
( naxis - nptotlrad - nptinlrad ) +
( ( dstgrdlvl#( Lvldex - 1 ) )*
dsttot*radiff/( sidelen**2.0 ) )
TempRad = ( dstotl - X(Lvldex, Cirdex, Axidex) )*
radinl/dsttot +
( X(Lvldex, Cirdex, Axidex) - dstinl )*
radotl/dsttot +
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& dstgrdlvl*( Lvldex - 1 )
END IF

Y(Lvldex, Cirdex, Axidex) = TempRad*COS (Sigma)
Z(Lvldex, Cirdex, Axidex) = TempRad*SIN (Sigma)

WRITE (29, 3000) X(Lvldex, Cirdex, Axidex),

& Y(Lvldex, Cirdex, Axidex),
& Z(Lvldex, Cirdex, Axidex)
3000 FORMAT (3 ( 2X, E24.17 ))
END DO
END DO

WRITE (*, 3100) Axidex, naxis
3100 FORMAT (’Finshed with step’, I5, ’ of’, Ib)

* For beautifying the grid (gnuplot’s splot format).
IF (beautgrid) THEN
WRITE (29, 3200) *°
3200 FORMAT (A)
END IF

END DO
CLOSE (29)

RETURN
END

A.2. Pressure Program

A.2.1. Press.const

Press.const

quest
nodog
05may97

RCS info
$Id: Press.const,v 1.4 1997/05/16 04:18:14 nodog Exp nodog $

* ¥ K K K K K X X X ¥



* Press.const holds several constants for Press.f

[ e _—
* sourcetype constants
INTEGER dipole, quadrupole, ring, diquad
PARAMETER ( dipole = 1, quadrupole = 2, ring = 3, diquad = 4 )
* square root of -1.0
DOUBLE COMPLEX i
PARAMETER ( i = ( 0.0, 1.0 ) )
K ——————— o e o —_———

A.2.2. Press.rc

k ————— ———— —_————

* Press.rc
* is read by Press.f to get runtime conditions.

* gencompfile: [LOGICAL] generate pressure comparison file
FALSE

* sourcetype: [INTEGER] 1=dipole 2=quadrupole 3=ring 4=dipole&(quadrupole@2f)
2

* ringsources: [INTEGER] number of monopole sources in the ring
16

* ringperiods: [INTEGER] number of periods around the ring
1

* ringradius: [DOUBLE PRECISION] radius of the ring in meters
0.125

k ————— ———— —_———

A.2.3. Press.f

* %

PROGRAM Press

Prologue
$Id: Press.f,v 1.13 1997/06/09 05:01:53 nodog Exp nodog $

Original program written by

Anderson Mills <nodog@sabine.acs.psu.edu>
at the Graduate Program in Acoustics

at Pennsylvania State University

* ¥ K K K K K X ¥ ¥
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Purpose:
Press reads in a grid, Kirch3.grid, and generates the
appropriate values for pressure on all grid points.

Processing:
Reads in values from Kirch3.dmn and Kirch3.rc and
the grid from Kirch3.grid. QOutput is stored in the file
Kirch3.pres.

Special requirements:
Just that Press.rc, Press.const, Kirch3.dmn, Kirch3.rc,
and Kirch3.grid all exist.

* 29 Kirch3.grid
* 39 Kirch3.pres

40 Kirch3.rc

* 32 Press.dir

* 37 Press.const

* 38 Press.rc

¥ —mmm Include files ---- -—=

* ¥ ¥ ¥

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

Constants from Press.rc —-- see Press.rc for description.
LOGICAL gencompfile

INTEGER sourcetype

INTEGER ringsources

INTEGER ringperiods

DOUBLE PRECISION ringradius

Constants from Kirch3.rc --- see Kirch3.rc for description.
LOGICAL anglefiles

LOGICAL directivity

LOGICAL geometry

LOGICAL egnparts

DOUBLE PRECISION density
DOUBLE PRECISION soundspeed
DOUBLE PRECISION deltatime
DOUBLE PRECISION ffpdist
DOUBLE PRECISION mach
DOUBLE PRECISION aspstart
DOUBLE PRECISION aspend
DOUBLE PRECISION aspint
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X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
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*

* ¥ X ¥ ¥

DOUBLE PRECISION X(nlevels, ncirc, naxis)
DOUBLE PRECISION Y(nlevels, ncirc, naxis)
DOUBLE PRECISION Z(nlevels, ncirc, naxis)

————————————————— Code - -——= ————- -—-
Main Program

CALL Banner ()

Read in constants from Press.rc - -
CALL ReadPrConst (gencompfile, sourcetype, ringsources,
& ringperiods, ringradius)

Read in constants from Kirch3.rc -—=
CALL GetK3Const (anglefiles, directivity,

& geometry, eqnparts, density, soundspeed, deltatime,

& ffpdist, mach, aspstart, aspend, aspint)

Read the grid file —-—---—————-——————————————————— .
CALL ReadGrid (X, Y, Z)

Generate and write the Kirch3 pressure file -

CALL K3PressOut (sourcetype, ringsources, ringperiods,

& ringradius, deltatime, ffpdist, soundspeed, X, Y, Z)

IF ( gencompfile ) THEN
Generate and write the directivity pressure file -------—------
CALL DirPressOut (sourcetype, ringsources, ringperiods,

& ringradius, deltatime, ffpdist, soundspeed)

ENDIF

CALL Banner ()

STOP
END

Main Program

SUBROUTINE Banner()

Prologue

Purpose: Show the beginning and ending of the program.
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*

—————————————————— Code - - -
WRITE (%, *) ° ’
WRITE (*, *) ’> 888888 ’
WRITE (*, *) ’> 8 8 88888 888888 8888 8888 °
WRITE (%, *) ’> 8 8 8 8 8 8 8 ’
WRITE (*, *) ’> 888888 8 8 88888 8888 8888 °
WRITE (*, *) ’ 8 88888 8 8 8’
WRITE (*, *) ’> 8 8 8 8 8 8 8 8’
WRITE (%, *) ’ 8 8 8 888888 8888 8888 °
WRITE (%, *) ? )
RETURN
END

SUBROUTINE ReadPrConst (gencompfile, sourcetype, ringsources,
& ringperiods, ringradius)

Prologue

Purpose:
To read in the constants from the Press.rc file

Processing:
Uses READ’s to get the info.

Special requirements:
Gotta have something to read, so the Press.rc file must exist.

Constants from Press.rc --- see Press.rc for description.
LOGICAL gencompfile

INTEGER sourcetype

INTEGER ringsources

INTEGER ringperiods

DOUBLE PRECISION ringradius

—————————————————— Local declarations —-——== —-——== -—=

CHARACTER Dummy

—————————————————— Code - - - -—=
OPEN (UNIT=30, FILE=’Press.rc’, STATUS=’UNKNOWN’)

Read constants from Press.rc --- See Press.rc for description.
Three lines of comments at the top.

READ (30, 6000) Dummy

READ (30, 6000) Dummy
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* ¥ Ok ¥

READ (30, 6000) Dummy

One blank line, one label line, then the constant.
READ (30, 6000) Dummy

READ (30, 6000) Dummy

READ (30, 6010) gencompfile
READ (30, 6000) Dummy

READ (30, 6000) Dummy

READ (30, 6030) sourcetype
READ (30, 6000) Dummy

READ (30, 6000) Dummy

READ (30, 6030) ringsources
READ (30, 6000) Dummy

READ (30, 6000) Dummy

READ (30, 6030) ringperiods
READ (30, 6000) Dummy

READ (30, 6000) Dummy

READ (30, 6020) ringradius

CLOSE (30)

6000 FORMAT (A)
6010 FORMAT (L5)
6020 FORMAT (F24.17)
6030 FORMAT (I9)

RETURN
END

SUBROUTINE ReadGrid (X, Y, Z)

Prologue
Purpose: Read the grid file.

Processing: Basically run through the array of the grid and figure
out the X, Y, and Z coords of each point.

Special requirements:
Kirch3.grid must exist.

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’
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X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
DOUBLE PRECISION X(nlevels, ncirc, naxis)
DOUBLE PRECISION Y(nlevels, ncirc, naxis)
DOUBLE PRECISION Z(nlevels, ncirc, naxis)

Axidex: Index in the axial direction.

Cirdex: Index in the circuferenctial direction.
Lvldex: Level index

INTEGER Lvldex, Cirdex, Axidex

_______________ Code - -

OPEN (UNIT=29, FILE=’Kirch3.grid’, STATUS=’UNKNOWN’)

DO Axidex = 1, naxis
DO Cirdex = 1, ncirc
D0 Lvldex = 1, nlevels

READ (29, 3000) X(Lvldex, Cirdex, Axidex),
Y(Lvldex, Cirdex, Axidex),
& Z(Lvldex, Cirdex, Axidex)
FORMAT (3 ( 2X, E24.17 ))

&

END DO
END DO

WRITE (*, 3100) Axidex, naxis
FORMAT (’ Read grid step’, I5, ’ of’, I5)

END DO
CLOSE (29)

RETURN
END

SUBROUTINE K3PressOut (sourcetype, ringsources, ringperiods,
& ringradius, deltatime, ffpdist, soundspeed, X, Y, Z)

Pur

Prologue

pose:
Generate the pressure file for Kirch3.

7



Processing:
Uses analytic computations to determine the pressure at all
the grid points for each time step.

Special requirements:
Kirch3.dmn and Press.const must exist.

*
*
*
*
*
*
*
*

Include files --- -—-

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

INCLUDE °’Press.const’

* K K ¥

* Constants from Press.rc --- see Press.rc for description.
INTEGER sourcetype
INTEGER ringsources
INTEGER ringperiods
DOUBLE PRECISION ringradius

* Constants from Kirch3.rc --- see Kirch3.rc for description.
DOUBLE PRECISION deltatime
DOUBLE PRECISION ffpdist
DOUBLE PRECISION soundspeed

X: X coord of the grid
Y: Y coord of the grid

* Z: Z coord of the grid
DOUBLE PRECISION X(nlevels, ncirc, naxis)
DOUBLE PRECISION Y(nlevels, ncirc, naxis)
DOUBLE PRECISION Z(nlevels, ncirc, naxis)

* ————m Local declarations -—-
* Axidex: Index in the axial direction.

* Cirdex: Index in the circuferenctial direction.

* Lvldex: Level index

* Timdex: Time index

INTEGER Lvldex, Cirdex, Axidex, Timdex

* P: Temporary pressure variable
DOUBLE PRECISION P(nlevels)

* Declaring the functions because they’re not just REAL
DOUBLE PRECISION RingSrcPress
DOUBLE PRECISION DipSrcPress
DOUBLE PRECISION DiQuSrcPress
DOUBLE PRECISION QuadSrcPress

ittt Code SNttt -—=
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* generate and write the pressure file for Kirch3
OPEN(UNIT=39, FILE='Kirch3.pres’, STATUS=’UNKNOWN’)

DO Timdex = 0, ntimes - 1
DO Axidex = 1, naxis
D0 Cirdex = 1, ncirc
DO Lvldex = 1, nlevels

Use the correct function depending on what is
specified in Press.rc. If something is incorrectly
specified, send a message to the screen.

IF ( sourcetype .EQ. dipole ) THEN

P(Lvldex) = DipSrcPress (
X(Lvldex, Cirdex, Axidex),
Y(Lvldex, Cirdex, Axidex),
Z(Lvldex, Cirdex, Axidex),
Timdex, deltatime, ffpdist, soundspeed )

[ S =

ELSEIF ( sourcetype .EQ. quadrupole ) THEN

P(Lvldex) = QuadSrcPress (
X(Lvldex, Cirdex, Axidex),
Y(Lvldex, Cirdex, Axidex),
Z(Lvldex, Cirdex, Axidex),
Timdex, deltatime, ffpdist, soundspeed )

PR

ELSEIF ( sourcetype .EQ. ring ) THEN

P(Lvldex) = RingSrcPress (
X(Lvldex, Cirdex, Axidex),
Y(Lvldex, Cirdex, Axidex),
Z(Lvldex, Cirdex, Axidex),
Timdex, ringsources, ringperiods, ringradius,
deltatime, ffpdist, soundspeed )

PR

ELSEIF ( sourcetype .EQ. diquad ) THEN

P(Lvldex) = DiQuSrcPress (
X(Lvldex, Cirdex, Axidex),
Y(Lvldex, Cirdex, Axidex),
Z(Lvldex, Cirdex, Axidex),
Timdex, deltatime, ffpdist, soundspeed )

b S

ELSE
WRITE ( *, * ) ’K3PressQOut: Source type undefined.’
ENDIF
END DO

WRITE (39, 4000) (P(Lvldex), Lvldex = 1, 3)
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4000

4100
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FORMAT (3 ( 1x, E24.17 ) )

END DO
END DO

WRITE (*, 4100) Timdex + 1, ntimes
FORMAT (° Finished with time step’, I5, ’ of’, I5,
& ’ of the Kirch3.pres file.’)

Add this back in to format the output for gnuplot’s splot.
WRITE (39, °*(4)’) *

END DO
CLOSE (39)

RETURN
END

SUBROUTINE DirPressOut (sourcetype, ringsources, ringperiods,
& ringradius, deltatime, ffpdist, soundspeed)

Prologue

Purpose:

Generate a comparison directivity pressure file.
Processing:

Uses analytic computations to determine the pressure at all

the directivity angles (0-359).
Special requirements:

Kirch3.dmn and Press.const must exist.

——————————————— Include files --- -—-

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

INCLUDE ’Press.const’

——————————————— Argument declarations -

Constants from Press.rc --- see Press.rc for description.
INTEGER sourcetype

INTEGER ringsources

INTEGER ringperiods

DOUBLE PRECISION ringradius



* Constants from Kirch3.rc --- see Kirch3.rc for description.
DOUBLE PRECISION deltatime
DOUBLE PRECISION ffpdist
DOUBLE PRECISION soundspeed

* ————m Local declarations -——- -—-
DOUBLE PRECISION pi

* Timdex: Time index
INTEGER Timdex

Xc: Temporary X variable.
Yc: Temporary Y variable.
Zc: Temporary Z variable.
DOUBLE PRECISION Xc, Yc, Zc

* Pd: [DOUBLE PRECISION] Temporary pressure variable
DOUBLE PRECISION Pd(O:ntimes - 1)

Thetadex: Temp angle variable
ThetaRad: Temp angle variable
INTEGER Thetadex

DOUBLE PRECISION ThetaRad

* Fourdex: Index through Fourier components
INTEGER Fourdex

FourCN: Fourier coefficient
FourFreq: frequency of Fourier component

* FourPhi: phase of Fourier components
DOUBLE PRECISION FourPhi, FourCN, FourFreq

* FourComp: Fourier components
DOUBLE PRECISION FourComp(1:nfouriercomps)

* FourdBComp: Fourier components in dB
DOUBLE PRECISION FourdBComp(1l:nfouriercomps)

DOUBLE PRECISION RingSrcPress
DOUBLE PRECISION DipSrcPress

DOUBLE PRECISION DiQuSrcPress
DOUBLE PRECISION QuadSrcPress

¥ —————————————————— Code —————————————————————————
* generate and write the directivity pressure file

pi = 4.0%ATAN (1.0)
* directivity output

OPEN(UNIT=32, FILE=’Press.dir’, STATUS=’UNKNOWN’)



Run through all angles.
DO Thetadex = 0, 359

Convert them to radians.
ThetaRad = ( pi/180.0 )#*Thetadex

Run through all time steps.
DO Timdex = 0, ntimes - 1

Farfield points

Xc = ffpdist*COS (ThetaRad)
Yc = ffpdist*SIN (ThetaRad)
Zc = 0.0

Use the correct function depending on what is
specified in Press.rc. If something is incorrectly
specified, send a message to the screen.

IF ( sourcetype .EQ. dipole ) THEN

Pd(Timdex) = DipSrcPress (Xc, Yc, Zc, Timdex,
deltatime, ffpdist, soundspeed )

ELSEIF ( sourcetype .EQ. quadrupole ) THEN

Pd(Timdex) = QuadSrcPress (Xc, Yc¢, Zc, Timdex,
deltatime, ffpdist, soundspeed )

ELSEIF ( sourcetype .EQ. ring ) THEN
Pd(Timdex) = RingSrcPress (Xc, Yc, Zc, Timdex,
ringsources, ringperiods, ringradius,
deltatime, ffpdist, soundspeed )

ELSEIF ( sourcetype .EQ. diquad ) THEN

Pd(Timdex) = DiQuSrcPress (Xc, Yc, Zc, Timdex,
deltatime, ffpdist, soundspeed )

ELSE
WRITE ( *, * ) ’DirPressQOut: Source type undefined.’
ENDIF

END DO

Fourier coefficient of pressure -------- —-——=

Run through all Fourier components
DO Fourdex = 1, nfouriercomps

NOTE: freq = (1/period) * which Fourier component
FourFreq = ( Fourdex*1.0 )/( ntimes*deltatime )
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CALL Fourier (Pd, FourPhi, FourCN, FourFreq, deltatime)

FourComp (Fourdex) = FourCN
FourdBComp (Fourdex) = 20.0%L0G10 (FourCN/2.0E-5)
END DO

WRITE (32, 5000) Thetadex,
& ( FourdBComp(Fourdex), FourComp(Fourdex),
& Fourdex = 1, nfouriercomps )
5000 FORMAT (I4, 2X, 20 ( 1X, E24.17 ))

WRITE (*, 5100) Thetadex
5100 FORMAT (’Finished with’, I5,
& ? of 360 degrees of the Press.dir comparison file.’)

END DO

CLOSE(UNIT=32)

RETURN

END

DOUBLE PRECISION FUNCTION DipSrcPress (Xp, Yp, Zp, TimeStep,

& deltatime, ffpdist, soundspeed)

Prologue

Purpose:

Generate the pressure for one X, Y, Z location for a dipole source.
Processing:

Uses analytic computations to determine the pressure at one point.
Special requirements:

Kirch3.dmn and Press.cont must exist.

—————————————————— Include files —-- —-——==

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

INCLUDE ’Press.const’

Xp: X coord of the point
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Yp: Y coord of the point
Zp: Z coord of the point
DOUBLE PRECISION Xp, Yp, Zp

TimeStep: The particular time step in the range of 0 to ntimes-1
INTEGER TimeStep

Constants from Kirch3.rc --- see Kirch3.rc for description.
DOUBLE PRECISION deltatime

DOUBLE PRECISION ffpdist

DOUBLE PRECISION soundspeed

—————————————————— Local declarations -——- -
DOUBLE PRECISION pi

Omega: Radial frequency of the source
WaveNum: Wave number of the source
Strength: Strength of the source

DOUBLE PRECISION Omega, WaveNum, Strength

Distance: Distance from the point to the KSP
CosTheta: cosine of the angle from X-Z plane
DOUBLE PRECISION Distance, CosTheta

DP: temporary pressure variable
DOUBLE PRECISION DP

—————————————————— Code - - -
generate and write the pressure

pi = 4.0%ATAN (1.0)

Omega = ( 2.0*pi )/( deltatime*ntimes )

WaveNum = Omega/soundspeed

The following strength gives 1 Pa at the far-field point
Strength = ffpdist

Distance = SQRT ( Xp**2.0 + Yp**2.0 + Zp**2.0 )

CosTheta = Xp/Distance

Dipole with highest pressure along the x axis
DP = CosTheta*(Strength/Distance)*

& DBLE ( EXP ( i*( WaveNum*Distance -

& Omega*deltatime*TimeStep ) ) )

DipSrcPress = DP

RETURN
END
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DOUBLE PRECISION FUNCTION QuadSrcPress (Xp, Yp, Zp, TimeStep,
& deltatime, ffpdist, soundspeed)

Prologue

Purpose:
Generate the pressure for one X, Y, Z location for a
quadrupole source

Processing:
Uses analytic computations to determine the pressure at one point.

Special requirements:
Kirch3.dmn and Press.cont must exist.

*OK K K K K K K K X X X ¥

*

—————————————————— Include files --—- -—-

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

INCLUDE ’Press.const’

* X X *

Xp: X coord of the point
Yp: Y coord of the point

* Zp: Z coord of the point
DOUBLE PRECISION Xp, Yp, Zp

* TimeStep: The particular time step in the range of 0 to ntimes-1
INTEGER TimeStep

* Constants from Kirch3.rc --- see Kirch3.rc for description.
DOUBLE PRECISION deltatime
DOUBLE PRECISION ffpdist
DOUBLE PRECISION soundspeed

¥ mmmm e Local declarations -——= -—=
DOUBLE PRECISION pi

Omega: Radial frequency of the source
WaveNum: Wave number of the source
Strength: Strength of the source

DOUBLE PRECISION Omega, WaveNum, Strength

Distance: Distance from the point to the KSP

SinTheta: sine of the angle from the X-Z plane

Cos2Theta: cosine of the 2 times the angle from X-Z plane
DOUBLE PRECISION Distance, SinTheta, Cos2Theta
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* DP: temporary pressure variable
DOUBLE PRECISION DP

* generate and write the pressure

pi = 4.0%ATAN (1.0)
Omega = ( 2.0*pi )/( deltatime*ntimes )
WaveNum = Omega/soundspeed

* The following strength gives 1 Pa at the far-field point
Strength = ffpdist

Distance = SQRT ( Xp**2.0 + Yp**2.0 + Zp**2.0 )

SinTheta = Yp/Distance
Cos2Theta = 1 - 2.*SinTheta**2.

* Quadrupole with highest pressure along the x and y axis
DP = Cos2Theta*(Strength/Distance)*
& DBLE ( EXP ( i*( WaveNum*Distance -
& Omega*deltatime*TimeStep ) ) )

QuadSrcPress = DP

RETURN
END

DOUBLE PRECISION FUNCTION DiQuSrcPress (Xp, Yp, Zp, TimeStep,
& deltatime, ffpdist, soundspeed)

Prologue

Purpose:
Generate the pressure for one X, Y, Z location for a dipole source
at the lowest frequency and a quadrupole source at 2 times the
lowest frequency.

Processing:
Uses analytic computations to determine the pressure at one point.

Special requirements:
Kirch3.dmn and Press.cont must exist.

¥R K K K K K K X X X X X X

*

—————————————————— Include files --—- ---

* ncirc: [INTEGER] Number of points around the cylindrical grid?
* naxis: [INTEGER] Number of axial points in the grid?



* K K ¥

ntimes: [INTEGER] The number of timesteps?
nlevels: [INTEGER] Number of grid levels?
INCLUDE ’Kirch3.dmn’
INCLUDE ’Press.const’

Xp: X coord of the point
Yp: Y coord of the point
Zp: Z coord of the point
DOUBLE PRECISION Xp, Yp, Zp

TimeStep: The particular time step in the range of 0 to ntimes-1
INTEGER TimeStep

Constants from Kirch3.rc --- see Kirch3.rc for description.
DOUBLE PRECISION deltatime

DOUBLE PRECISION ffpdist

DOUBLE PRECISION soundspeed

———————————————— Local declarations —-——== -—=

DOUBLE PRECISION pi

Omega: Radial frequency of the source
WaveNum: Wave number of the source
Strength: Strength of the source

DOUBLE PRECISION Omega, WaveNum, Strength

Distance: Distance from the point to the KSP

CosTheta: cosine of the angle from X-Z plane

SinTheta: sine of the angle from the X-Z plane

Cos2Theta: cosine of the 2 times the angle from X-Z plane
DOUBLE PRECISION Distance, CosTheta, SinTheta, Cos2Theta

DP: temporary pressure variable
DOUBLE PRECISION DP

________________ Code - - -

generate and write the pressure

pi = 4.0%ATAN (1.0)
Omega = ( 2.0*pi )/( deltatime*ntimes )
WaveNum = Omega/soundspeed

The following strength gives 1 Pa at the far-field point
Strength = ffpdist

Distance = SQRT ( Xp**2.0 + Yp**2.0 + Zp**2.0 )
CosTheta = Xp/Distance
SinTheta = Yp/Distance

Cos2Theta = 1 - 2.*SinTheta**2.
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Dipole with highest pressure along the x axis plus a quadrupole
at 2*freq with pressure antinodes along the x and y axis

DP = CosTheta*(Strength/Distance)*

& DBLE ( EXP ( i*( WaveNum*Distance -

& Omega*deltatime*TimeStep ) ) ) +

& Cos2Theta*(Strength/Distance) *

& DBLE ( EXP ( i*( 2.*WaveNum*Distance -

& 2.*0Omega*deltatime*TimeStep ) ) )

DiQuSrcPress = DP

RETURN
END

DOUBLE PRECISION FUNCTION RingSrcPress (Xp, Yp, Zp, TimeStep,
& ringsources, ringperiods, ringradius,
& deltatime, ffpdist, soundspeed)

Prologue
Purpose:
Generate the pressure for one X, Y, Z location for a ring source.
Processing:
Uses analytic computations to determine the pressure at one point.
Special requirements:
Kirch3.dmn and Press.const must exist.

—————————————————— Include files --- -—-

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

INCLUDE ’Press.const’

Xp: X coord of the point
Yp: Y coord of the point
Zp: Z coord of the point
DOUBLE PRECISION Xp, Yp, Zp

TimeStep: The particular time step in the range of 0 to ntimes-1
INTEGER TimeStep

Constants from Press.rc --- see Press.rc for description.



INTEGER ringsources
INTEGER ringperiods
DOUBLE PRECISION ringradius

Constants from Kirch3.rc --- see Kirch3.rc for description.
DOUBLE PRECISION deltatime

DOUBLE PRECISION ffpdist

DOUBLE PRECISION soundspeed

—————————————————— Local declarations -——-
DOUBLE PRECISION pi

Omega: Radial frequency of the source
WaveNum: Wave number of the source
Strength: Strength of the source

DOUBLE PRECISION Omega, WaveNum, Strength

Distance: Distance from source to point.
DOUBLE PRECISION Distance

Sum0fP: Temporary pressure variable
DOUBLE PRECISION SumOfP

Srcdex: Index of sources
INTEGER Srcdex

SigmaRad: Radian angle of individual source
DOUBLE PRECISION SigmaRad

Xsrc: X coord of the source
Ysrc: Y coord of the source
Zsrc: Z coord of the source
DOUBLE PRECISION Xsrc, Ysrc, Zsrc

—————————————————— Code - -
generate and write the pressure

pi = 4.0%ATAN (1.0)
Omega = ( 2.0%pi )/( deltatime*ntimes )
WaveNum = Omega/soundspeed

The following strength gives 1 Pa at the far-field point for
each source. The combination of sources will probably have
a higher pressure.

Strength = ffpdist

Sum0fP = 0.0

Look at all the sources.
DO Srcdex = 1, ringsources

Find the X, Y, and Z coordinate of each source.
SigmaRad = 2.0*pi*(1.0%(Srcdex - 1))/(1.0*ringsources)



0.0
ringradius*C0S (SigmaRad)
Zsrc = ringradius*SIN (SigmaRad)

Xsrc

Ysrc

Distance = SQRT ( ( Xsrc - Xp )**2.0 + ( Ysrc - Yp )**2.0 +
& ( Zsrc - Zp )*%*2.0 )

Monopole source with the phase shifted by the last EXP.
Sum0fP = SumOfP + (Strength/Distance)*

& DBLE ( EXP ( -i*Omega*TimeStep*deltatime )*

EXP ( i*WaveNum*Distance )*

EXP ( i*SigmaRad*( 1.0*ringperiods ) ) )

P &

END DO
RingSrcPress = Sum0fP

RETURN
END

Fully Numerical Kirchhoff Program

A.3.1. Kirch3.dmn

¥R K K K K X X X K X X ¥

*

Kirch3.dmn

quest
nodog
01apr96

RCS info
$Id: Kirch3.dmn,v 1.51 1997/07/17 15:06:49 nodog Exp nodog $

Kirch3.dmn is a file which holds the spatial and time array
dimensions of a grid used to calculate far field noise.

Number of axial points in the grid?
INTEGER naxis
PARAMETER (naxis = 10)

Number of points around the cylindrical grid?
INTEGER ncirc
PARAMETER (ncirc = 22)
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* The number of timesteps?
INTEGER ntimes
PARAMETER (ntimes = 60)

* The number of grid levels?
INTEGER nlevels
PARAMETER (nlevels = 3)

* The number of Fourier components?

* maximum is set by 7020 FORMAT statement in Kirch3.f.
INTEGER nfouriercomps
PARAMETER (nfouriercomps = 1)

k ————— -

A.3.2. Kirch3.rc

* Kirch3.rc
* is read by Kirch3.f to get many of its constant values.

* anglefiles: [LOGICAL] pressure and Fourier files at every angle
FALSE

* directivity: [LOGICAL] look at directivity and Fourier output
TRUE

* geometry: [LOGICAL] output the grid geometry
FALSE

* eqnparts: [LOGICAL] look at the separate parts of the equation
FALSE

* density: [DOUBLE PRECISION] density in kg/m~3 (future use)
1.21

* soundspeed: [DOUBLE PRECISION] speed of sound in m/s
343.0

* frequency: [DOUBLE PRECISION] the frequency of the source
343.0

* ffpdist: [DOUBLE PRECISION] the distance to the far field point
10.3

* mach: [DOUBLE PRECISION] the Mach number (avg v/CO) (future use)
0.0

* aspstart: [INTEGER] the beginning aspect angle in degrees
0.0

* aspend: [INTEGER] the ending aspect angle in degrees
360.0
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* aspint: [INTEGER] the interval between angles in degrees
1.0

K ————— - _——

A.3.3. Kirch3.f

*
*
PROGRAM Kirch3
*
* Prologue
*
*  $Id: Kirch3.f,v 1.33 1997/06/18 13:03:07 nodog Exp nodog $
*
* Original program written by
* Anderson Mills <nodog@sabine.acs.psu.edu>
* at the Graduate Program in Acoustics
* at Pennsylvania State University
*
* Purpose:
*  Kirch3 is meant to be used to calculate the far field noise
* at a point some specified distance from a Kirchhoff surface.
* It requires grid files and unsteady pressure files given by
*  other programs.
*
* Processing:
*
* Special requirements:
*

*

Unit Numbers

20 Grid.rc Grid.f runtime conditions
29  Kirch3.grid grid file

30 Press.rc Press.f runtime conditions
32 Press.dir comparison output of Press.f
39 Kirch3.pres pressure input file

40 Kirch3.rc Kirch3.f runtime conditions
50 Kirch3.dir directivity output

52 P.XXX pressure output file

53 F.XXX fourier output file

56 PartAFile eqn part A file

57  PartBFile eqn part B file

58 Part(CFile eqn part C file

64  dPKirch3.out  dPdN and dPdT from Kirch3.f
66 geom.XXX R, dRdN, and dS for angles

¥ O X K K X K K K K X X K X K K K K ¥ ¥ ¥

¥ ——————————— - Include files --- -——=
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ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

DOUBLE PRECISION pi

Timdex: current timestep
INTEGER Timdex

X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
DOUBLE PRECISION X(naxis, ncirc, nlevels)
DOUBLE PRECISION Y(naxis, ncirc, nlevels)
DOUBLE PRECISION Z(naxis, ncirc, nlevels)

dN: distance between two gridpoints away from the KS
in the normal direction
DOUBLE PRECISION dN(naxis, ncirc, nlevels - 1)

RadAng: radian angle of current calculation
DOUBLE PRECISION RadAng

FileDegAng: Angle used for filenames
DOUBLE PRECISION FileDegAng

R: distance between KS point and far field point

dRdN: change in R in normal direction from KS

dS: area of effect of pressure on the computational surface
DOUBLE PRECISION R(naxis, ncirc, nlevels)

DOUBLE PRECISION dRdN(naxis, ncirc)

DOUBLE PRECISION dS(naxis, ncirc)

Lag: number of Timdexs of lag for any KS point
DOUBLE PRECISION Lag(naxis, ncirc)

P: pressures on the KS
DOUBLE PRECISION P(QO:ntimes - 1, naxis, ncirc)

dPdN: the change in pressure on the normal away from the KS
DOUBLE PRECISION dPAN(O:ntimes - 1, naxis, ncirc)

dPdT: change in pressure between time steps at any KS point
DOUBLE PRECISION dPdT(O:ntimes - 1, mnaxis, ncirc)

FFPress: radiated pressure
DOUBLE PRECISION FFPress(0: ntimes - 1)

Constants from Kirch3.rc --- see Kirch3.rc for description.
LOGICAL anglefiles
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LOGICAL directivity
LOGICAL geometry

LOGICAL eqnparts

DOUBLE PRECISION density
DOUBLE PRECISION soundspeed
DOUBLE PRECISION deltatime
DOUBLE PRECISION ffpdist
DOUBLE PRECISION mach
DOUBLE PRECISION aspstart
DOUBLE PRECISION aspend
DOUBLE PRECISION aspint

—————————————— Local declarations
RadStart: radian aspstart
RadInt: radian aspint

DOUBLE PRECISION RadStart, RadInt

Angdex: Angle index
INTEGER Angdex

DOUBLE PRECISION FindRadPress

—————————————— Code -——-

Main Loop
pi = 4.0%ATAN (1.0)
CALL Banner ()

Read in constants from Kirch3.rc

CALL GetK3Const (anglefiles, directivity,

geometry, eqnparts, density, soundspeed, deltatime,

ffpdist, mach, aspstart, aspend, aspint)

Read the grid file -

CALL ReadGrid (X, Y, Z, dN, geometry)

Read the pressure file ---—-----

CALL ReadPress (P, dN, dPdN, dPdT, pi, density, soundspeed,

deltatime, ffpdist, eqnparts)

Set up for directivity output. -
IF (directivity) THEN

OPEN (UNIT=50, FILE=’Kirch3.dir’, STATUS=’UNKNOWN’)

END IF

Scroll over aspect angles. ——————————————————————————————————————

RadStart = pi*aspstart/180.0
RadInt = pi*aspint/180.0

DO Angdex = 0, INT ( ( aspend - aspstart )/aspint )
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6000

150

&

RadAng = RadStart + RadInt*( Angdex*1.0 )

WRITE (*, 6000) INT ( Angdex*aspint )
FORMAT ( ° Kirch3: Calculations for ’, I3, ' degrees’ )

Open the output files for each angle -----
IF (anglefiles) THEN
CALL OpenAngleFiles (RadAng, FileDegAng, pi,
directivity, geometry, eqnparts)
END IF

Scroll over time. ——————————————————— -
D0 Timdex = O, ntimes - 1

Reset the summed pressure.
FFPress(Timdex) = 0.0

Calculate the distances and lags. -----
IF ( Timdex .EQ. O ) THEN

Find distances from ffp to KS points.

CALL FindDistance (X, Y, Z, dN, dS, R, dRdN, Lag,
RadAng, FileDegAng, pi, soundspeed, deltatime,
ffpdist, geometry)

END IF

Sum radiated pressure. --- ---
FFPress(Timdex) = FindRadPress (P, dPdN, dPdT,

X, Y, Z, dS, R, dRdN, Lag, Timdex,

eqnparts, pi, soundspeed, deltatime)

OQutput the radiated pressure for this time step. —-—-—-—-—-—-
IF (anglefiles) THEN
WRITE (52, 150) (1.0#Timdex)*deltatime, FFPress(Timdex)
FORMAT (2 ( 2X, E24.17 ))
END IF

End time loop.
END DO

Output directivity for this RadAng. ----- -
IF (directivity) THEN
CALL QOutDirect (RadAng, FileDegAng, FFPress, pi, anglefiles,
deltatime)
END IF

IF (anglefiles) THEN
CALL CloseAngleFiles (directivity, geometry, eqnparts)
ENDIF

End aspectang loop.
END DO

k ————— ———— —_———
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Close the directivity file.
IF (directivity) THEN
CLOSE (UNIT=50)

END IF

CALL Banner()

STOP
END

End of Main

* ¥ K K K K K X X K ¥ *

*

* X X K ¥

SUBROUTINE Banner()

Prologue

Purpose:

To mark the begin and end of the program.

Processing:

Just writes out a banner.

Special requirements:

—————————————————— Code - -
WRITE (%, *) ’
WRITE (*, *) ’ 8 8 88888 °
WRITE (%, *) ° 8 8 8 888388 88838 8 88 8’
WRITE (*, *) > 8 8 88 8 8 8 8 8 8’
WRITE (%, *) ’ 888 8 8 8 8 888888 88888 °
WRITE (%, *) * 8 8 8 88888 8 8 8 8’
WRITE (*, *x) 8 8 88 8 8 88 8 8 8’
WRITE (%, *) * 8 8838 8 8888 8 8 88888
WRITE (¥, *) ’
RETURN
END
SUBROUTINE OpenAngleFiles (RadAng, FileDegAng, pi,

& directivity, geometry, eqnparts)
Prologue

Purpose:

Open all the files associated with one aspect angle.
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Processing:
Figure out file names and then open them.

Special requirements:
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DOUBLE PRECISION RadAng
DOUBLE PRECISION FileDegAng
DOUBLE PRECISION pi

LOGICAL directivity

LOGICAL geometry

LOGICAL eqnparts

¥ —mm e Local declarations -——= -——=

* POutFile: full output filename
FourFile: fourier output filename
GeomFile: geomtery output filename
CHARACTER*32 POutFile, FourFile, GeomFile

* PartAFile: output filename for eqn part a
PartBFile: output filename for eqn part b
PartCFile: output filename for eqn part c
CHARACTER*32 PartAFile, PartBFile, PartCFile

Huns: integer hundreds of current angle in degrees
Ones: integer ones of current angle in degrees
Tens: integer tens of current angle in degrees
INTEGER Huns, Tens, Ones

* LenFileName: length of the filename [integer]
INTEGER LenFileName

ittt Code Sttt ———-

* Fix output filename so there are no negative angles.
IF (RadAng .LT. 0.0) THEN
FileDeghAng = ( 2.0*pi + RadAng )*180.0/pi

ELSE
FileDegAng = ( RadAng + 1E-6 )#*180.0/pi
END IF
* Create pressure vs. time output filename

Huns = INT ( FileDegAng/100.0 )

Tens = INT ( ( FileDegAng - ( Huns#*100.0 ) )/10.0 )

Ones = INT ( ( FileDegAng ) - ( Huns*100.0 + Tens#*10.0 ) )
POutFile = ’P’

LenFileName = INDEX (POutFile, ’ °’) - 1

POutFile = PQutFile(:LenFileName) // ’.’ // CHAR (Huns + 48) //
& CHAR (Tens + 48) // CHAR (Ones + 48)

OPEN (UNIT=52, FILE=POutFile, STATUS=’UNKNOWN’)

97



* K K K X X *

Open the Fourier output file. --
IF (directivity) THEN

Create Fourier vs. freq output filename

FourFile = ’F’

LenFileName = INDEX (FourFile, °’ ’) - 1

FourFile = FourFile(:LenFileName) // ’.’ // CHAR (Huns+ 48)
& // CHAR (Tens + 48) // CHAR (Ones + 48)

OPEN (UNIT=53, FILE=FourFile, STATUS=’UNKNOWN’)

END IF

Open the geom output file. ----- -—-
IF (geometry) THEN

GeomFile = ’geom’

LenFileName = INDEX (GeomFile, °’ ’) - 1

GeomFile = GeomFile(:LenFileName) // ’.’ // CHAR (Huns+ 48)
& // CHAR (Tens + 48) // CHAR (Ones + 48)

OPEN (UNIT=66, FILE=GeomFile, STATUS=’UNKNQOWN’)

END IF

Set up output filenames for the equation parts -—--
IF (eqnparts) THEN

LenFileName = INDEX (POutFile,’ ’) - 1
PartAFile = POutFile(:LenFileName) // ’.P’
PartBFile = PQutFile(:LenFileName) // ’.dPdT’
PartCFile = PQutFile(:LenFileName) // ’.dPdN’

OPEN (UNIT=56, FILE=PartAFile, STATUS=’UNKNOWN’)
OPEN (UNIT=57, FILE=PartBFile, STATUS=’UNKNOWN’)
OPEN (UNIT=58, FILE=PartCFile, STATUS=’UNKNOWN’)

END IF

RETURN
END

SUBROUTINE CloseAngleFiles (directivity, geometry, eqnparts)

Prologue

Purpose:
Close all the files associated with one aspect angle.

Processing:
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*
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Close files

Special requirements:

LOGICAL directivity
LOGICAL geometry
LOGICAL eqnparts

—————————————————— Code -—- - -—--

Close the pressure output file.
CLOSE (UNIT=52)

Close the Fourier analysis output file.
IF (directivity) THEN

CLOSE (UNIT=53)
END IF

Close the geometry output file.
IF (geometry) THEN

CLOSE (UNIT=66)
END IF

Close the equation parts files.
IF (egqnparts) THEN

CLOSE (UNIT=56)

CLOSE (UNIT=57)

CLOSE (UNIT=58)
END IF

RETURN
END

SUBROUTINE OutDirect (RadAng, FileDegAng, FFPress, pi, anglefiles,
& deltatime)

Prologue

Purpose:
Write out the direcitivity and Fourier output.

Processing:
Write write write

Special requirements:

—————————————————— Include files --- -——
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ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

7010

Argument declarations --

DOUBLE PRECISION RadAng

DOUBLE PRECISION FileDegAng

DOUBLE PRECISION FFPress(O:ntimes - 1)
DOUBLE PRECISION pi

LOGICAL anglefiles

DOUBLE PRECISION deltatime

—————————————— Local declarations -——

Fourdex: Index through Fourier components
INTEGER Fourdex

FourCN: Fourier coefficient

FourFreq: frequency of Fourier component
FourPhi: phase of Fourier components
DOUBLE PRECISION FourPhi, FourCN, FourFreq

FourComp: Fourier components
DOUBLE PRECISION FourComp(1:nfouriercomps)

FourdBComp: Fourier components in dB
DOUBLE PRECISION FourdBComp(1l:nfouriercomps)

Run through all Fourier components -------- -—--
DO Fourdex = 1, nfouriercomps

Calculate the freq of interest
FourFreq = ( Fourdex*1.0 )/( ntimes*deltatime )

Find the Fourier component at that freq
CALL Fourier (FFPress, FourPhi, FourCN, FourFreq, deltatime)

Add it to the array of Fourier components
FourComp (Fourdex) = FourCN
FourdBComp (Fourdex) = 20.0%L0G10 (FourCN/2.0E-5)

Write that to the F.?7?7 files (Fourier comp vs. freq)
IF (anglefiles) THEN
WRITE (53, 7010) FourFreq, FourdBComp(Fourdex),
FourComp (Fourdex)
FORMAT (3 ( 1X, E24.17 ))
ENDIF

END DO
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Write the components out to the directivity file.

WRITE (50, 7020) RadAng*180.0/pi,

& ( FourdBComp(Fourdex), FourComp(Fourdex),

& Fourdex = 1, nfouriercomps )

The 21 in the following FORMAT statement sets the max number of
nfouriercomps. If more than 10 are desired, 1+2*fouriercomps.

7020 FORMAT (21 ( 1X, E24.17 ))

RETURN
END

SUBROUTINE ReadGrid (X, Y, Z, dN, geometry)

Prologue

Purpose: Read the cylindrical grid file and generate dN.

Processing: Basically run through the array of the grid and figure

out the X, Y, and Z coords of each point then run through the
array again and calculate dN.

Special requirements:

————————————————— Include files --- -——- -——

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
DOUBLE PRECISION X(naxis, ncirc, nlevels)
DOUBLE PRECISION Y(naxis, ncirc, nlevels)
DOUBLE PRECISION Z(naxis, ncirc, nlevels)

dN: distance between two gridpoints away from the KS
in the normal direction

DOUBLE PRECISION dN(naxis, ncirc, nlevels - 1)

LOGICAL geometry

————————————————— Local declarations —-———= —-———= ———=

Axidex: [INTEGER] Index in the axial direction.
Cirdex: [INTEGER] Index in the circuferenctial direction.
Lvldex: [INTEGER] Level index
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INTEGER Axidex, Cirdex, Lvldex

5000

2100

&

&

&

Code ——————————————————————————————————
OPEN (UNIT=29, FILE=’Kirch3.grid’, STATUS=’UNKNOWN’)

Set up for the geometry output
IF (geometry) THEN

OPEN (UNIT=50, FILE=’geometry.K3’, STATUS=’UNKNOWN’)
END IF

DO Axidex = 1, naxis
DO Cirdex = 1, ncirc
DO Lvldex = 1, nlevels

Read the coords of the grid from Kirch3.grid
READ (29, 5000) X(Axidex, Cirdex, Lvldex),

Y(Axidex, Cirdex, Lvldex),
Z(Axidex, Cirdex, Lvldex)
FORMAT (3 ( 2X, E24.17 ))
Write out geometry informatiom.
IF (geometry) THEN
WRITE (50, 5000) X(Axidex, Cirdex, Lvldex),
Y(Axidex, Cirdex, Lvldex),
Z(Axidex, Cirdex, Lvldex)
END IF
END DO
Find dn’s (the distances between normal blade points) ------
This assumes that the grid points in increasing levels are
along lines normal to the surface of the lowest level of
the grid.
dN(Axidex, Cirdex, 1) = SQRT (
( X(Axidex, Cirdex, 1) - X(Axidex, Cirdex, 2) )**2.0 +
( Y(Axidex, Cirdex, 1) - Y(Axidex, Cirdex, 2) )**2.0 +
( Z(Axidex, Cirdex, 1) - Z(Axidex, Cirdex, 2) )**2.0 )
dN(Axidex, Cirdex, 2) = SQRT (
( X(Axidex, Cirdex, 2) - X(Axidex, Cirdex, 3) )**2.0 +
( Y(Axidex, Cirdex, 2) - Y(Axidex, Cirdex, 3) )**2.0 +
( Z(Axidex, Cirdex, 2) - Z(Axidex, Cirdex, 3) )**2.0 )
END DO
Let the user see progress
WRITE (*, 2100) Axidex, naxis
FORMAT (’ ReadGrid: step’, I5, ’ of’, I5)
END DO

CLOSE (29)
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* Close the geometry output file.
IF (geometry) THEN
CLOSE (UNIT=50)
END IF

RETURN
END

* end ReadGrid subroutine

SUBROUTINE ReadPress (P, dN, dPdN, dPdT, pi, density, soundspeed,
& deltatime, ffpdist, eqnparts)

Prologue
Purpose:
This subroutine extracts information important to the prediction of
the radiated noise from the pressure file.

Processing:

Special requirements:

¥R K K K X X X K X X ¥

Include files --- ——

* ncirc: [INTEGER] Number of points around the cylindrical grid?
* naxis: [INTEGER] Number of axial points in the grid?
* ntimes: [INTEGER] The number of timesteps?
* nlevels: [INTEGER] Number of grid levels?
INCLUDE ’Kirch3.dmn’
* Argument declarations --
dN: distance between two gridpoints away from the KS
in the normal direction
DOUBLE PRECISION dN(naxis, ncirc, nlevels - 1)
* P: pressures on the KS
DOUBLE PRECISION P(O:ntimes - 1, naxis, ncirc)
* dPdN: the change in pressure on the normal away from the KS
DOUBLE PRECISION dPAN(O:ntimes - 1, naxis, ncirc)
* dPdT: change in pressure between time steps at any KS point

DOUBLE PRECISION dPAT(0:ntimes - 1, naxis, ncirc)

DOUBLE PRECISION pi
DOUBLE PRECISION demnsity
DOUBLE PRECISION soundspeed
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DOUBLE PRECISION deltatime
DOUBLE PRECISION ffpdist
LOGICAL eqnparts

Axidex: Index in the axial direction.
Cirdex: Index in the circuferenctial direction.
INTEGER Axidex, Cirdex

Timdex: time index
INTEGER Timdex

Pr: pressures above the first gridlevel (temporary variable)
DOUBLE PRECISION Pr(0O:ntimes - 1, naxis, ncirc, nlevels - 1)

SOP: temp variable to remove the static press
DOUBLE PRECISION SOP

OPEN(UNIT=39, FILE=’Kirch3.pres’, STATUS=’UNKNOWN’)

D0 Timdex = 0, ntimes - 1
D0 Axidex = 1, naxis
D0 Cirdex = 1, ncirc

Read in the pressure

READ (39, 3000) P(Timdex, Axidex, Cirdex),
Pr(Timdex, Axidex, Cirdex, 1),

& Pr(Timdex, Axidex, Cirdex, 2)

&

FORMAT (3 ( 1x, E24.17 ) )
END DO

END DO

Let the user see progress

WRITE (*, 3100) Timdex + 1, ntimes

FORMAT (’ ReadPress: Finished with time step’, I5, ’ of’, I5)
END DO
CLOSE (39)

Removing the static pressure term at each location on the blade —-

Sum the pressures over the entire grid
WRITE (*, *) ’ReadPress: Removing static P.’
DO Timdex = 0, ntimes - 1
DO Axidex = 1, naxis
D0 Cirdex = 1, ncirc

SOP = SOP + P(Timdex, Axidex, Cirdex)

END DO
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END DO
END DO

Remove the average from everywhere on the grid
DO Timdex = 0, ntimes - 1
DO Axidex = 1, naxis
D0 Cirdex = 1, ncirc

P(Timdex, Axidex, Cirdex) = P(Timdex, Axidex, Cirdex) -

& ( SOP/( 1.0*ntimes*naxis*ncirc ) )
Pr(Timdex, Axidex, Cirdex, 1) =

& Pr(Timdex, Axidex, Cirdex, 1) -

& ( SOP/( 1.0*ntimes*naxis*ncirc ) )
Pr(Timdex, Axidex, Cirdex, 2) =

& Pr(Timdex, Axidex, Cirdex, 2) -

& ( SOP/( 1.0*ntimes*naxis*ncirc ) )

END DO
END DO
END DO

find dPdAN term with a second order scheme --- -
WRITE (*, *) ’ReadPress: Finding dPdN.’

D0 Timdex = 0, ntimes - 1
DO Axidex = 1, naxis
D0 Cirdex = 1, ncirc

This is for a non-equally spaced grid,
but it works for equally spaced grids, too.
dPdN(Timdex, Axidex, Cirdex) =
( ( -2.0*dN(Axidex, Cirdex, 1)*
dN(Axidex, Cirdex, 2) -
dN(Axidex, Cirdex, 2)*%2.0 ) *
P(Timdex, Axidex, Cirdex) +
( dN(Axidex, Cirdex, 1) +
dN(Axidex, Cirdex, 2) )**2.0 *
Pr(Timdex, Axidex, Cirdex, 1) -
dN(Axidex, Cirdex, 1)**2.0 *
Pr(Timdex, Axidex, Cirdex, 2) )/
( ( dN(Axidex, Cirdex, 1)*dN(Axidex, Cirdex, 2) )*
( dN(Axidex, Cirdex, 1) + dN(Axidex, Cirdex, 2) ) )

IR

END DO
END DO
END DO
calculate dPdT ———————"—"—"—"—"""""""—"—"——————————————————————————

WRITE (%, *) ’ReadPress: Finding dPdT.’

D0 Axidex = 1, naxis
DO Cirdex = 1, ncirc



Using a central differencing scheme and the assumption
that the pressures on the grid are exactly one period
dPdT (0, Axidex, Cirdex) = ( P(1, Axidex, Cirdex) -

& P(ntimes - 1, Axidex, Cirdex) )/( 2.0*deltatime )
dPdT (ntimes - 1, Axidex, Cirdex) = ( P(0, Axidex, Cirdex) -
& P(ntimes - 2, Axidex, Cirdex) )/( 2.0*deltatime )
END DO
END DO

DO Timdex = 1, ntimes - 2
D0 Axidex = 1, naxis
DO Cirdex = 1, ncirc

* Using a central differencing scheme
dPdT(Timdex, Axidex, Cirdex) =
& ( P(Timdex + 1, Axidex, Cirdex) -
& P(Timdex - 1, Axidex, Cirdex) )/( 2.0xdeltatime )
END DO
END DO

END DO
* output dPKirch3.out --------------------———o—— -—--
* This allows the user to look at the pressure values on the grid.

IF (eqnparts) THEN
WRITE (*, *) ’ReadPress: Writing P, dPdN, and dPdT.’
OPEN (UNIT=64, FILE=’dPKirch3.out’, STATUS=’UNKNOWN’)
DO Timdex = O, ntimes - 1

DO Axidex = 1, naxis
Cirdex 1

WRITE (64, 3200) P(Timdex, Axidex, Cirdex),
dPdN(Timdex, Axidex, Cirdex),
& dPdT(Timdex, Axidex, Cirdex)

3200 FORMAT (3 ( 1x, E24.17 ) )

&

END DO
END DO

CLOSE (UNIT=64)
END IF

RETURN
END

* end ReadPress
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SUBROUTINE FindDistance (X, Y, Z, dN, dS, R, dRdN, Lag,
& RadAng, FileDeghAng, pi, soundspeed, deltatime,
& ffpdist, geometry)

Prologue

Purpose:
finddistance finds the distance between each point on the KS
and the far field point.

Processing:

Special requirements:

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

Argument declarations --

X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
DOUBLE PRECISION X(naxis, ncirc, nlevels)
DOUBLE PRECISION Y(naxis, ncirc, nlevels)
DOUBLE PRECISION Z(naxis, ncirc, nlevels)

dN: distance between two gridpoints away from the KS
in the normal direction
DOUBLE PRECISION dN(naxis, ncirc, nlevels - 1)

R: distance between KS point and far field point

dRdN: change in R in normal direction from KS

dS: length of effect of pressure on the computational surface
DOUBLE PRECISION R(naxis, ncirc, nlevels)

DOUBLE PRECISION dRdN(naxis, ncirc)

DOUBLE PRECISION dS(maxis, ncirc)

Lag: number of Timdexs of lag for any KS point
DOUBLE PRECISION Lag(naxis, ncirc)

RadAng: radian angle of current calculation
DOUBLE PRECISION RadAng

FileDegAng: Angle used for filenames
DOUBLE PRECISION FileDegAng
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DOUBLE
DOUBLE
DOUBLE
DOUBLE

PRECISION pi
PRECISION soundspeed
PRECISION deltatime
PRECISION ffpdist

LOGICAL geometry

Axidex:
Cirdex:
Lvldex:

Local declarations

Index in the axial direction.
Index in the circuferenctial direction.
Level index

INTEGER Axidex, Cirdex, Lvldex

XSP: x
YSP: y
ZSP: =z
XFP: x
YFP: y
ZFP: z
DOUBLE

coord of the surface point

coord of the surface point

coord of the surface point

coord of the far field point

coord of the far field point

coord of the far field point

PRECISION XSP, YSP, ZSP, XFP, YFP, ZFP

INTEGER Huns, Tens, Ones
CHARACTER*32 RQOutFile

Radius:
AxiLen:
DOUBLE
Xpl: x
Xp2: x
Ypl: y
Yp2: y
Zpl: =z
Zp2: z
DOUBLE

Calculate R’s for all grid points. -

Radius of dS
"axial" length of dS
PRECISION Radius, AxilLen

coordinate of the midpoint between Index
coordinate of the midpoint between Index
coordinate of the midpoint between Index
coordinate of the midpoint between Index
coordinate of the midpoint between Index
coordinate of the midpoint between Index
PRECISION Xpi, Xp2, Ypl, Yp2, Zpl, Zp2

- 1 and Index
and Index + 1
- 1 and Index
and Index + 1
- 1 and Index
and Index + 1

DO Axidex = 1, naxis
DO Cirdex = 1, ncirc
D0 Lvldex = 1, nlevels

Farfield points

XFP = ffpdist*C0S (RadAng)
YFP ffpdist*SIN (RadAng)
ZFP = 0.0

Surface points

XSP = X(Axidex, Cirdex, Lvldex)
YSP = Y(Axidex, Cirdex, Lvldex)
ZSP Z(Axidex, Cirdex, Lvldex)

R(Axidex, Cirdex, Lvldex) =
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END
END DO

SQRT (( XFP - XSP )*%2.0 +
( YFP - YSP )**2.0 +
( ZFP - ZSP )*%2.0)

END DO

Find dRAN term with a second order scheme

This is the formulation for a non-equally spaced grid,
but works just as well for an equally spaced one.
dRdN(Axidex, Cirdex) =

-( ( -2.0%dN(Axidex, Cirdex, 1)=*

dN(Axidex, Cirdex, 2) -

dN(Axidex, Cirdex, 2)*%2.0 ) *

R(Axidex, Cirdex, 1) +

( dN(Axidex, Cirdex, 1) +

dN(Axidex, Cirdex, 2) )*%2.0 *

R(Axidex, Cirdex, 2) -

dN(Axidex, Cirdex, 1)**2.0 *

R(Axidex, Cirdex, 3) )/

( ( dN(Axidex, Cirdex, 1)*dN(Axidex, Cirdex, 2) )*

( dN(Axidex, Cirdex, 1) + dN(Axidex, Cirdex, 2) ) )

Calculate Lag for this surface point.
This algorithm calculates the lag relative to the FFP
Lag(Axidex, Cirdex) = -R(Axidex, Cirdex, 1)/

( soundspeed*deltatime )

DO

Finding trapezoidal weights. ---—-—"""""-—"—""""""""""""""""""""""—-

D0 Cirdex = 1, ncirc

Onc
Xpl
Xp2
Ypi
Yp2
Zp1
Zp2

e for the starting point.

= X(1, Cirdex, 1)

( X(1, Cirdex, 1) + X(2, Cirdex, 1) )/2.0
0.0

( Y(1, Cirdex, 1) + Y(2, Cirdex, 1) )/2.0
0.0

( Z(1, Cirdex, 1) + Z(2, Cirdex, 1) )/2.0

Radius = SQRT ( Y(1, Cirdex, 1)#*¥2.0 +

Axi

as(

Onc
Xp1
Xp2
Ypi
Yp2
Zpl

Z(1, Cirdex, 1)#**2.0 )

Len = SQRT ( ( Xp2 - Xpl )**2.0 +

( Yp2 - Ypl )**2.0 +

( Zp2 - Zpl )*%x2.0 )

1, Cirdex) = 2.0*pi*Radius*Axilen/ncirc

e for the ending point.

= ( X(naxis - 1, Cirdex, 1) + X(naxis, Cirdex, 1) )/2.0
X(naxis, Cirdex, 1)

( Y(naxis - 1, Cirdex, 1) + Y(maxis, Cirdex, 1) )/2.0
0.0

( Z(naxis - 1, Cirdex, 1) + Z(naxis, Cirdex, 1) )/2.0
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Zp2 = 0.0
Radius =
Z(naxi
Axilen =
( Yp2
( Zp2
dS(naxis,

END DO

And once for
DO Axidex =
DO Cirdex

Xpl =
/2.
Xp2 =
/2.
Ypl =
/2.
Yp2 =
/2.
Zpl =
/2.
Zp2 =
/2.
Radius
Z(A
AxiLen
(Y
(z
dS(Axi

END DO
END DO

Write R, dRd
IF (geometry

SQRT ( Y(naxis, Cirdex, 1)**2.0 +

s, Cirdex, 1)**2.0 )

SQRT ( ( Xp2 - Xpl )**2.0 +

- Ypl )#%2.0 +

- Zpl )**2.0 )

Cirdex) = 2.0*pi*Radius*AxiLen/ncirc

everything in between
2, naxis - 1
= 1, ncirc

X(Axidex - 1, Cirdex, 1) + X(Axidex,
X(Axidex, Cirdex, 1) + X(Axidex + 1,
Y(Axidex - 1, Cirdex, 1) + Y(Axidex,
Y(Axidex, Cirdex, 1) + Y(Axidex + 1,
Z(Axidex - 1, Cirdex, 1) + Z(Axidex,
Z(Axidex, Cirdex, 1) + Z(Axidex + 1,
= SQRT ( Y(Axidex, Cirdex, 1)%%2.0 +
xidex, Cirdex, 1)**2.0 )

= SQRT ( ( Xp2 - Xpl )*%2.0 +

P2 - Ypl )*%2.0 +
p2 - Zpl )**2.0 )

Cirdex,

Cirdex,

Cirdex,

Cirdex,

Cirdex,

Cirdex,

dex, Cirdex) = 2.0*pi*Radius*AxiLen/ncirc

N, and dS to the geometry output file.
) THEN

WRITE (*,*) ’FindDistance: Writing geometry output.’

DO Axidex
DO Cir

WRI

FOR

END DO
END DO

END IF

RETURN

= 1, naxis
dex = 1, ncirc

TE (66, 9000) R(Axidex, Cirdex, 1),

dRAN(Axidex, Cirdex), dS(Axidex, Cirdex),

Lag(Axidex, Cirdex)
MAT (4( 2X, E24.17 ))

1)

1)

1)

1)

1)

1)
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END

End finddistance subroutine

DOUBLE PRECISION FUNCTION FindRadPress (P, dPdN, dPdT,
& X, Y, Z, dS, R, dRdN, Lag, Timdex,
& eqnparts, pi, soundspeed, deltatime)

Prologue
Purpose:
This suborutine adds the different pressures around the KS
together for each time step and then returns it.

Processing:

Special requirements:

—————————————————— Include files --- -——

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

P: pressures on the KS
DOUBLE PRECISION P(O:ntimes - 1, naxis, ncirc)

dPdN: the change in pressure on the normal away from the KS
DOUBLE PRECISION dPAN(O:ntimes - 1, naxis, ncirc)

dPdT: change in pressure between time steps at any KS point
DOUBLE PRECISION dPAT(O:ntimes - 1, naxis, ncirc)

X: X coord of the grid
Y: Y coord of the grid
Z: Z coord of the grid
DOUBLE PRECISION X(naxis, ncirc, nlevels)
DOUBLE PRECISION Y(naxis, ncirc, nlevels)
DOUBLE PRECISION Z(naxis, ncirc, nlevels)

R: distance between KS point and far field point

dRdN: change in R in normal direction from KS

dS: length of effect of pressure on the computational surface
DOUBLE PRECISION R(naxis, ncirc, nlevels)

DOUBLE PRECISION dRdN(naxis, ncirc)

DOUBLE PRECISION dS(maxis, ncirc)
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Lag: number of Timdexs of lag for any KS point
DOUBLE PRECISION Lag(naxis, ncirc)

Timdex: Time step
INTEGER Timdex

LOGICAL egnparts

DOUBLE PRECISION pi

DOUBLE PRECISION soundspeed
DOUBLE PRECISION deltatime

—————————————————— Local declarations

IT1: Timdex before actual time
IT2: Timdex after actual time
INTEGER IT1, IT2

Axidex: [INTEGER] Index in the axial direction.
Cirdex: [INTEGER] Index in the circuferenctial direction.
INTEGER Axidex, Cirdex

Y1: eqn value at IT1

Y2: eqn value at IT2

D1: distance from IT1 to TimeShifted

D2: distance from IT2 to TimeShifted

TempTime: temporary time calculation variable
TimeShifted: actual time of calculation

DOUBLE PRECISION Y1, Y2, D1, D2, TempTime, TimeShifted

A: value of p term at TimeShifted
Al: value of p term at IT1
A2: value of p term at IT2
DOUBLE PRECISION A, A1, A2

B: value of dPdT term at TimeShifted
Bl: value of dPdAT term at IT1

B2: value of dPdAT term at IT2

DOUBLE PRECISION B, B1, B2

C: value of dPdAN term at TimeShifted
Cl: value of dPAN term at IT1

C2: value of dPAN term at IT2

DOUBLE PRECISION C, C1, C2

FrntConst: Constant to multiply integration terms.
DOUBLE PRECISION FrntConst

Sum0fP: Summing pressure variable
DOUBLE PRECISION Sum0OfP

Front constant
FrntConst = 1.0/( 4.0*pi )
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Reset cummulative variables
SumQfP = 0.0

IF (eqnparts) THEN

A =0.0

B =0.0

c=0.0
END IF

DO Axidex = 1, naxis
DO Cirdex = 1, ncirc

Add the lag to the time
(This creates the "retarded (emission) time')
TempTime = 1.0%Timdex + Lag(Axidex, Cirdex)

I HATE GOTO statements, but it’s the only way to make a
WHILE-DO loop in Fortran. Ugh.
This makes sure that TempTime is >= 0
IF ( TempTime .LT. 0.0 ) THEN
TempTime = TempTime + ntimes*1.0
GOTO 4000
END IF

This makes sure that TimeShifted is < ntimes and accurately
wrapped to the correct place in the period.
TimeShifted = MOD ( TempTime, ntimes*1.0 )

TimeShifted should be between IT1 and IT2
IT1 = INT (TimeShifted)
IT2 = MOD (IT1 + 1, ntimes)

Where is TimeShifted placed between them?
D1 = TimeShifted - 1.0%IT1
D2 = 1.0 - D1

The pressure is calculated in parts and then summed.

A1 = P(IT1, Axidex, Cirdex)*dRdN(Axidex, Cirdex)/
R(Axidex, Cirdex, 1)**2.0

Bl = dRdAN(Axidex, Cirdex)*dPdT(IT1, Axidex, Cirdex)/
( soundspeed*R(Axidex, Cirdex, 1) )

C1 = dPAN(IT1, Axidex, Cirdex)/R(Axidex, Cirdex, 1)

Y1 = (AL +B1 -C1)

A2 = P(IT2, Axidex, Cirdex)*dRAN(Axidex, Cirdex)/
R(Axidex, Cirdex, 1)**2.0

B2 = dRdAN(Axidex, Cirdex)*dPdT(IT2, Axidex, Cirdex)/
( soundspeed*R(Axidex, Cirdex, 1) )

C2 = dPAN(IT2, Axidex, Cirdex)/R(Axidex, Cirdex, 1)

Y2 = (A2 + B2 - C2 )

Cummulative variable
SumQfP = SumQfP + FrntConst*dS(Axidex, Cirdex)*
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* Accumulate the equation part sums
IF (egnparts) THEN
A = A + FrntConst*dS(Axidex, Cirdex)*( A1xD2 + A2xD1 )
B = B + FrntConst*dS(Axidex, Cirdex)*( B1*D2 + B2*D1 )
C = C + FrntConst*dS(Axidex, Cirdex)*( C1i*D2 + C2xD1 )
END IF

END DO
END DO

* Send out the value for the function
FindRadPress = Sum0fP

* Output the equation parts
IF (eqnparts) THEN
WRITE (56, 4020) (1.0*Timdex)*deltatime, A
WRITE (57, 4020) (1.0%Timdex)*deltatime, B
WRITE (58, 4020) (1.0*Timdex)*deltatime, C
END IF

4020 FORMAT (2( 2X, E24.17 ))

RETURN
END

* End FindRadPress procedure

A.4. Analytical-Numerical Kirchhoff Program

A.4.1. K3A.rc

k ———— ———— —_——

* K3A.rc is read by K3A.f to get runtime conditions.
* NOTE: ksrbegin cannot = 0.0, n???steps = 0 sets 777 to 7?7begin

* beautygrid: [LOGICAL] beautify output grid for gnuplot’s splot
FALSE

* ksrbegin: [DOUBLE PRECISION] starting Kirchhoff surface radius (KSRad)
2.0

* ksrend: [DOUBLE PRECISION] ending Kirchhoff surface radius (KSRad)
2.0

* nksrsteps: [INTEGER] number of steps between ksrbegin and ksrend
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0

* ffdbegin: [DOUBLE PRECISION] starting far-field distance (FFDist)
10.0

* ffdend: [DOUBLE PRECISION] ending far-field distance (FFDist)
10.5

* nffdsteps: [INTEGER] number of steps between ffdbegin and ffdend
20

A.4.2. K3A.f

*
PROGRAM K3A

*

* Prologue

*

* $Id: K3A.f,v 1.25 1997/05/30 14:55:50 nodog Exp nodog $

*

* Original program written by

* Anderson Mills <nodog@sabine.acs.psu.edu>

* at the Graduate Program in Acoustics

* at Pennsylvania State University

*

* Purpose:

* Gives analytical results for Kirch3 based on a spherical geometry.

*

* Special requirements:

* Kirch3.dmn, Kirch3.rc, and Press.rc must exist.

*

* Unit Numbers ---- -——=

* 40 Kirch3.rc

70 K3A.rc

78 K3A.out
* Argument declarations --
* Constants from K3A.rc --- See K3A.rc for descriptions

LOGICAL beautygrid

DOUBLE PRECISION ksrbegin
DOUBLE PRECISION ksrend
INTEGER nksrsteps

DOUBLE PRECISION ffdbegin
DOUBLE PRECISION ffdend
INTEGER nffdsteps

* Constants from Kirch3.rc --- see Kirch3.rc for description.



LOGICAL anglefiles

LOGICAL directivity
LOGICAL geometry
LOGICAL egnparts

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION

* Main Program

CALL Banner ()

* Read in constants from K3A.rc --
CALL GetAnConst (beautygrid, ksrbegin, ksrend, nksrsteps,
& ffdbegin, ffdend, nffdsteps)

* Read in constants from Kirch3.rc
CALL GetK3Const (anglefiles, directivity,

density
soundspeed
deltatime
ffpdist
mach
aspstart
aspend
aspint

& geometry, eqnparts, density, soundspeed, deltatime,

& ffpdist, mach, aspstart, aspend, aspint)

* Do the Analytical calculations -
CALL Analytical (beautygrid, ksrbegin, ksrend, nksrsteps,

& ffdbegin, ffdend, nffdsteps, soundspeed, deltatime)

CALL Banner ()

STOP
END

* Main Program

*
*
SUBROUTINE Banner()
*
* Prologue
*
* Purpose: Show the beginning and ending of the program.
*
* Code ————————————m ———=

WRITE (%, *) °
WRITE (*, *) ’ 8

8 88888

8
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WRITE (¥, *) > 8 8 8 8 838 i
WRITE (*, *) > 8 8 8 8 8
WRITE (*, *) ’ 888 88888 8 8’
WRITE (%, *) > 8 8 8 8888888 °
WRITE (*, *) ° 8 8 8 8 8 8"’
WRITE (*, *) * 8 8 88888 8 8’

WRITE (%, *) °’ ’

RETURN
END

SUBROUTINE GetAnConst (beautygrid, ksrbegin, ksrend, nksrsteps,
& ffdbegin, ffdend, nffdsteps)

Prologue

Purpose:
To read in the constants from the K3A.rc file

Processing:
Uses READ’s to get the info in.

Special requirements:
Gotta have something to read, so the K3A.rc file must exist.

Constants from K3A.rc -—- See K3A.rc for descriptions
LOGICAL beautygrid

DOUBLE PRECISION ksrbegin

DOUBLE PRECISION ksrend

INTEGER nksrsteps

DOUBLE PRECISION ffdbegin

DOUBLE PRECISION ffdend

INTEGER nffdsteps

—————————————————— Local declarations -—=- -—=- -——==

CHARACTER Dummy

—————————————————— Code -—=- -—=- - -—==
OPEN (UNIT=70, FILE=’K3A.rc’, STATUS=’UNKNOWN’)
Three lines of comments at the top.
READ (70, 5000) Dummy
READ (70, 5000) Dummy
READ (70, 5000) Dummy

Read constants from K3A.rc
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One blank
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,
READ (70,

CLOSE (70)

5000 FORMAT (A)

line,
5000)
5000)
5010)
5000)
5000)
5020)
5000)
5000)
5020)
5000)
5000)
5030)
5000)
5000)
5020)
5000)
5000)
5020)
5000)
5000)
5030)

5010 FORMAT (L5)
5020 FORMAT (F24.17)
5030 FORMAT (I9)

RETURN
END

one label line, then the constant.
Dummy
Dummy
beautygrid
Dummy
Dummy
ksrbegin
Dummy
Dummy
ksrend
Dummy
Dummy
nksrsteps
Dummy
Dummy
ffdbegin
Dummy
Dummy
ffdend
Dummy
Dummy
nffdsteps

SUBROUTINE Analytical (beautygrid, ksrbegin, ksrend, nksrsteps,
& ffdbegin, ffdend, nffdsteps, soundspeed, deltatime)

Purpose:

Prologue

To calculate far-field pressure for a dipole in a

spherical Kirchhoff surface using analytical values for the
equation terms.
the Grid/Press/Kirch3 combination.

Processing:

This is effectively an analytical version of

Uses values from Kirch3.rc to find the frequency and soundspeed
and uses values from Kirch3.dmn for array sizes. QOutput is
several files giving output pressure over several Kirchhoff
surface radii (KSR) and/or far-field distances (FFDist).
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* Special requirements:

*
*
*

* X X *

* ¥ ¥ ¥

Kirch3.rc, Kirch3.dmn, and K3A.rc must all exist.

Include files --- ——

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

Variables from K3A.rc --- See K3A.rc for descriptions
LOGICAL beautygrid

DOUBLE PRECISION ksrbegin

DOUBLE PRECISION ksrend

INTEGER nksrsteps

DOUBLE PRECISION ffdbegin

DOUBLE PRECISION ffdend

INTEGER nffdsteps

Constants from Kirch3.rc --- see Kirch3.rc for description.
DOUBLE PRECISION soundspeed
DOUBLE PRECISION deltatime

Local declarations _——
DOUBLE PRECISION pi

frntconst: 1/(4pi)
DOUBLE PRECISION frntconst

Omega: The angular frequency = 2pif

K: The wavenumber = Omega/soundspeed

Strength: The strength of the dipole (currently = FFDist to
give 1 Pa at the FFDist

DOUBLE PRECISION Omega, K, Strength

KSRad: The Kirchhoff surface radius
DOUBLE PRECISION KSRad

Sigma: Angle around X going from Y towards Z
Theta: Angle from the X axis
DOUBLE PRECISION Sigma, Theta

Phi: Angle of the far-field point with the X axis
DOUBLE PRECISION Phi

Time: The time in seconds at a particular Timedex
DOUBLE PRECISION Time

dS: The area of a trapezoidal patch for integration
DOUBLE PRECISION dS



*  *

R: Distance from KSP to FFP

dRdAN: normal derivative of Distance from KSP to FFP
DOUBLE PRECISION R

DOUBLE PRECISION dRdN

P: pressure
DOUBLE PRECISION P

dPdN: normal derivative of the pressure
DOUBLE PRECISION dPdN

dPdT: time derivative of the pressure
DOUBLE PRECISION dPdT

Term?: Value for the ? term of the Kirchhoff equation
DOUBLE PRECISION TermA, TermB, TermC

Part?: Storage of the ? part of the Kirchhoff equation
DOUBLE PRECISION PartA, PartB, PartC

DipDirect: dipole directivity
DOUBLE PRECISION DipDirect

Xf, Yf: FFP coords
Xk, Yk, Zk: KSP coords
DOUBLE PRECISION Xf, Yf, Xk, Yk, Zk

h: height for dS calculations
DOUBLE PRECISION h

Tau: DOUBLE PRECISION time for calculations
DOUBLE PRECISION Tau

I: square root of -1
Etothe: E**i(kr-wt)
DOUBLE COMPLEX I, Etothe

PFFP: Pressure contribution at the far-field point
DOUBLE PRECISION PFFP(O:ntimes - 1)

PFFPContrib: Pressure term contribution at the far-field point
DOUBLE PRECISION PFFPContrib(O:ntimes - 1)

dPdTFFPContrib: dPdT term contribution at the far-field point
DOUBLE PRECISION dPATFFPContrib(0O:ntimes - 1)

dPdNFFPContrib: dPdN term contribution at the far-field point
DOUBLE PRECISION dPANFFPContrib(0O:ntimes - 1)

PFour, PFourdB: Pa and dB Fourier coeff of whole integral
PC, PCdB: Pa and dB Fourier coeff of pressure term
DOUBLE PRECISION PFour, PFourdB, PC, PCdB

dPdTC, dPdTCdB: Pa and dB Fourier coeff of dPdT term
dPdNC, dPdNCdB: Pa and dB Fourier coeff of dPdN term
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DOUBLE PRECISION dPdTC, dPdTCdB, dPdNC, dPdNCdB

Freq: Operating frequency
DOUBLE PRECISION Freq

FourPhi: Phase of Fourier component
FourCN: Magnitude of Fourier component
DOUBLE PRECISION FourPhi, FourCN

???dex: Indexes for various loops
INTEGER Axidex, Cirdex, Raddex, Timdex, Distdex

4.0*ATAN (1.0)
= (0.0, 1.0)

o
M-
non

WRITE (%, *) ° constants of interest’

WRITE (*, *) * - - ’
Freq = 1.0/( ntimes*deltatime )

WRITE (%, %) ? Freq =’, Freq
Omega = (2.0+%pi)/(deltatime*ntimes)
WRITE (%, *) ? Omega =’, Omega

K = Omega/soundspeed

WRITE (%, *) °’ K=", K

Phi = 6.283

WRITE (*, *) ° Phi =’, Phi

frntconst = 1.0/(4.0%pi)
WRITE (%, %) ° frntconst =’, frntconst
WRITE (%, *) ° ?

OPEN (UNIT=78, FILE=’K3A.out’, STATUS=’UNKNOWN’)

Radius loop
DO Raddex = 0, nksrsteps

Distance loop
DO Distdex = 0, nffdsteps

Calculate KSRad, set to ksrbegin if nksrsteps = 0

IF ( nksrsteps .EQ. O ) THEN
KSRad = ksrbegin

ELSE
KSRad = ( 1.0*Raddex )*( ( ksrend - ksrbegin )/
& ( 1.0*nksrsteps ) )+ ksrbegin
ENDIF

Calculate FFDist, set to ffdbegin if nffdsteps = 0

IF ( nffdsteps .EQ. O ) THEN
FFDist = ffdbegin
ELSE

FFDist = ( 1.0#Distdex )*( ( ffdend - ffdbegin )/

& ( 1.0*nffdsteps ) ) + ffdbegin
ENDIF
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Set the strength of the dipole to the FFDist so output
will always be 1 Pa at whatever FFDist is chosen
Strength = FFDist

Calculate the far-field point coords
Xf = FFDist*COS (Phi)
Yf = FFDist*SIN (Phi)

Give and indication to the user of progress
WRITE (*, 1000) KSRad, FFDist
1000 FORMAT (’ KSRad = ’, F6.3, ° FFDist = ’, F6.3)

Time loop
DO Timdex = O, ntimes - 1

Calculate the time and reset cumulative variables
Time = Timdex*deltatime

TermA = 0.0
TermB = 0.0
TermC = 0.0
Axis loop

DO Axidex = 1, naxis

Calculate angle from X axis for a spherical grid.
Theta = ( pi*( Axidex - 0.5 ) )/naxis

Calculate the area of the integration patch.

h = KSRad*ABS ( ( COS (pi*( Axidex - 1 )/naxis) ) -
& ( COS (pi*Axidex/naxis) ) )

dS = 2.0*pi*KSRad*h/ncirc

Source directivity
DipDirect = COS (2.*Theta)

Circumferential loop
DO Cirdex = 1, ncirc

Find the angle around the X axis
Sigma = ( 2.0*pi*Cirdex )/( ncirc )

Calculate the Kirchhoff surface point coords

Xk = KSRad*C0S (Theta)
Yk = KSRad#SIN (Theta)*COS (Sigma)
Zk = KSRad*SIN (Theta)*SIN (Sigma)

Helping constants for the Kirchhoff equation
R =SQRT ( ( Xk - Xf )**2.0 + ( Yk - Yf )*x2.0 +

& Zk*%2.0 )
dRdN = ( Xk*( Xf - Xk ) + Yk*x( Yf - Yk ) -
& Zk**2.0 )/ABS ( KSRad#*R )

Tau = Time - R/soundspeed

Etothe = EXP ( I*( K*KSRad - Omega*Tau ) )

P = DBLE ( Strength*DipDirect*Etothe/KSRad )
dPdN = DBLE ( Strength*DipDirect*Etothe*



( ( I*K*KSRad - 1.0 )/( KSRad*¥2.0 ) ) )
dPdT = DBLE ( ( -I*Strength#DipDirect*0Omega/
KSRad )*Etothe )

Storage of the parts

PartA = P*dRAN/R**2.0

PartB = dPdT*dRdN/( R*soundspeed )
PartC = - dPAN/R

Cumulative value variables

TermA = TermA + ( frntconst*dS*PartA )
TermB = TermB + ( frntconst*dS*PartB )
TermC TermC + ( frntconst*dS*PartC )

END DO
Cirdex loop

END DO
Axidex loop

Set the time history variable to this Timdex’s cum.

PFFPContrib(Timdex) = TermA
dPdTFFPContrib(Timdex) = TermB
dPANFFPContrib(Timdex) = TermC
PFFP(Timdex) = TermA + TermB + TermC

END DO
Timdex loop

var.

Fourier calculations——- ————
CALL Fourier (PFFP, FourPhi, FourCN, Freq, deltatime)

PFour = FourCN
PFourdB = 20.0*L0G10 (FourCN/2.0E-5)

CALL Fourier (PFFPContrib, FourPhi, FourCN, Freq,
deltatime)

PC = FourCN
PCdB = 20.0%L0G10 (FourCN/2.0E-5)

CALL Fourier (dPdTFFPContrib, FourPhi, FourCN, Freq,
deltatime)

dPdTC = FourCN
dPdTCdB = 20.0*L0G10 (FourCN/2.0E-5)

CALL Fourier (dPANFFPContrib, FourPhi, FourCN, Freq,
deltatime)

dPdNC = FourCN
dPdNCdB = 20.0*L0G10 (FourCN/2.0E-5)

Qutput to the output file.
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WRITE (78, 1040) KSRad*Freq/soundspeed, FFDist, PFour,

& PFourdB, PC, PCdB, dPdTC, dPdTCdB, dPdNC, dPdNCdB
1040 FORMAT (10 ( 1X, E24.17 ))
END DO
* Distdex loop
* Beautify the grid for gnuplot’s splot.

IF ( beautygrid ) THEN
WRITE (78, 1050) *°
1050 FORMAT (A)
ENDIF

END DO
* Raddex loop

CLOSE (UNIT=78)

RETURN
END

* Analytical

A.5. Common Subroutines

A.5.1. Fourier.f

SUBROUTINE Fourier (Funct, FourPhi, FourCN, FourFreq, deltatime)

*
* Prologue

*

* Purpose:

* determines the Fourier coefficient, Cn, and the phase shift,

* FourPhi, given a function, f, at kp discrete times, t, where

* t(k) is the time sample size and n is the frequency bin number.

*

* Processing:

*

* Special requirements:

*

¥ ———————— - Include files --- -—-- -——=
* ncirc: [INTEGER] Number of points around the cylindrical grid?

* naxis: [INTEGER] Number of axial points in the grid?

* ntimes: [INTEGER] The number of timesteps?

* nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’
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DOUBLE PRECISION Funct(0: ntimes - 1)
DOUBLE PRECISION FourPhi, FourCN, FourFreq
DOUBLE PRECISION deltatime

—————————————————— Local declarations -——=

INTEGER Timdex

DOUBLE PRECISION Omega

DOUBLE PRECISION pi

DOUBLE COMPLEX CN

DOUBLE COMPLEX F(O:ntimes - 1)
DOUBLE COMPLEX i

pi = 4.0%ATAN ( 1.0 )
i=(0.0, 1.0)
Omega = 2.0*pi*FourFreq

set up for integration -------- -—= —-——=
D0 Timdex = 0, ntimes - 1

F(Timdex) = Funct(Timdex)*EXP ( i*Omega*Timdex*deltatime )
END DO

CN = (0.0, 0.0)

Integration —------ m —-——
D0 Timdex = 0, ntimes - 2

CN = CN + ( F(Timdex) + F(Timdex + 1) )/( ntimes*1.0 )
END DO

phase calculation -----——-————————————— e
FourPhi = 0.0
IF ( DBLE ( CN ) .EQ. 0d0 ) THEN
IF ( IMAG ( CN ) .GT. 0d0 ) THEN
FourPhi = pi/2.0
ELSEIF ( IMAG ( CN ) .LT. 040 ) THEN
FourPhi = -pi/2.0
ENDIF
ELSE
FourPhi = ATAN2 ( -IMAG ( CN ), DBLE ( CN ) )
ENDIF

Fourier component coefficient ---------------—-—-—————————————————
FourCN = ABS ( CN )

RETURN
END

End of Fourier procedure.




A.5.2. GetK3Const.f
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SUBROUTINE GetK3Const (anglefiles, directivity,
& geometry, eqnparts, density, soundspeed, deltatime,
& ffpdist, mach, aspstart, aspend, aspint)

Prologue

Purpose:

To read in the constants from the Kirch3.rc file

Processing:

Uses READ’s to get the info in.

Special requirements:

Gotta have something to read, so the Kirch3.rc file must exist.

ncirc: [INTEGER] Number of points around the cylindrical grid?
naxis: [INTEGER] Number of axial points in the grid?

ntimes: [INTEGER] The number of timesteps?

nlevels: [INTEGER] Number of grid levels?

INCLUDE ’Kirch3.dmn’

Constants from Kirch3.rc --- See Kirch3.rc for description.
LOGICAL anglefiles

LOGICAL directivity

LOGICAL geometry

LOGICAL eqnparts

DOUBLE PRECISION density
DOUBLE PRECISION soundspeed
DOUBLE PRECISION deltatime
DOUBLE PRECISION ffpdist
DOUBLE PRECISION mach
DOUBLE PRECISION aspstart
DOUBLE PRECISION aspend
DOUBLE PRECISION aspint

Local declarations _—

CHARACTER Dummy
DOUBLE PRECISION Frequency

Code ————————————— -—=

OPEN (UNIT=40, FILE=’Kirch3.rc’, STATUS=’UNKNOWN’)

126



127

Three lines of comments at the top.
READ (40, 2000) Dummy
READ (40, 2000) Dummy
READ (40, 2000) Dummy

Read constants from Kirch3.rc
One blank line, one label line, then the constant.
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2010) anglefiles
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2010) directivity
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2010) geometry
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2010) eqgnparts
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) density
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) soundspeed
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) Frequency
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) ffpdist
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) mach

READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) aspstart
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) aspend
READ (40, 2000) Dummy

READ (40, 2000) Dummy

READ (40, 2020) aspint

CLOSE (40)
deltatime = 1d0/(Frequency*ntimes)
WRITE ( *, * ) ’GetK3Const: Frequency = ’, Frequency,
& > deltatime = ’, deltatime, ’ ntimes = ’, ntimes
2000 FORMAT (A)
2010 FORMAT (L5)
2020 FORMAT (F24.17)

RETURN
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END
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